(本題滿分12分)在正四棱錐中,側棱的長為,與所成的角的大小等于.
(1)求正四棱錐的體積;
(2)若正四棱錐的五個頂點都在球的表面上,求此球的半徑.
科目:高中數(shù)學 來源: 題型:解答題
(14分)如圖,在三棱錐S—ABC中,是邊長為4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分別為AB、SB的中點。
⑴ 求證:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求點B到平面CMN的距離。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
在四棱錐中,,,平面,為的中點,.
(Ⅰ)求四棱錐的體積;
(Ⅱ)若為的中點,求證:平面平面;
(Ⅲ)求二面角的大小。.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E、F分別是AB、PD的中點.
(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求四面體PEFC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點E在棱PA上,且PE=2EA.
(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA,AC、CB、BP的中點.
(1)求證:D、E、F、G四點共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面體PABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)
在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E的棱AB上移動。
(I)證明:D1EA1D;
(II)AE等于何值時,二面角D1-EC-D的大小為。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com