已知直線過(guò)坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸正半軸上,若點(diǎn)和點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)都在上,求直線和拋物線的方程.
直線方程為,拋物線方程為
依題意設(shè)拋物線的方程可寫(xiě)為,且軸和軸不是所求直線.
過(guò)原點(diǎn),因而可設(shè)的方程為           ①
設(shè)分別是關(guān)于的對(duì)稱(chēng)點(diǎn),因而,
直線的方程為          ②
由①,②聯(lián)立解得的交點(diǎn)的坐標(biāo)為
的中點(diǎn),從而點(diǎn)的坐標(biāo)為
 ③
同理得點(diǎn)的坐標(biāo)為            ④
均為拋物線上,由③得,
由此知,即         ⑤
同理由④得,即,
從而,整理得
解得
但當(dāng)時(shí),由③知
這與在拋物線上矛盾,故舍去
設(shè),則直線的方程為
代入⑤,求得
所以直線方程為,拋物線方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別是,是橢圓外的動(dòng)點(diǎn),滿足,點(diǎn)是線段與該橢圓的交點(diǎn),設(shè)為點(diǎn)的橫坐標(biāo),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


已知橢圓的中心在坐標(biāo)原點(diǎn),左頂點(diǎn),離心率,為右焦點(diǎn),過(guò)焦點(diǎn)的直線交橢圓、兩點(diǎn)(不同于點(diǎn)).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)時(shí),求直線PQ的方程;
(Ⅲ)判斷能否成為等邊三角形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正三角形的頂點(diǎn),求的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作直線交拋物線于兩點(diǎn).
求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)到兩個(gè)定點(diǎn)距離的比為,點(diǎn)到直線的距離為1.求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓和雙曲線有公共的焦點(diǎn),(1)求雙曲線的漸近線方程(2)直線過(guò)焦點(diǎn)且垂直于x軸,若直線與雙曲線的漸近線圍成的三角形的面積為,求雙曲線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知坐標(biāo)滿足方程的點(diǎn)都在曲線上,那么  ( )
A.上的點(diǎn)的坐標(biāo)都適合方程
B.凡坐標(biāo)不適合的點(diǎn)都不在上;
C.不在上的點(diǎn)的坐標(biāo)必不適合
D.不在上的點(diǎn)的坐標(biāo)有些適合;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題


A.8B.C.4D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案