【題目】在△ABC中,已知a、b、c分別是三內(nèi)角A、B、C所對應的邊長,且b2+c2﹣a2=bc
(1)求角A的大小;
(2)若sin2A+sin2B=sin2C,試判斷△ABC的形狀并求角B的大小.
【答案】
(1)解:在△ABC中,由余弦定理得:a2=b2+c2﹣2bccosA,
∴cosA= ,
又∵b2+c2﹣a2=bc,
∴cosA= ,
∵A為三角形內(nèi)角,
∴A= ;
(2)解:已知等式sin2A+sin2B=sin2C,由正弦定理得a2+b2=c2,
∴△ABC是以角C為直角的直角三角形,
又A= ,
∴B= .
【解析】(1)在三角形ABC中,利用余弦定理列出關系式,表示出cosA,將已知等式代入計算求出cosA的值,即可確定出角A的大;(2)已知等式利用正弦定理化簡,再利用勾股定理的逆定理判斷出三角形為直角三角形,由A的度數(shù)即可求出B的度數(shù).
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;.
科目:高中數(shù)學 來源: 題型:
【題目】二手車經(jīng)銷商小王對其所經(jīng)營的型號二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進行整理,得到如下數(shù)據(jù):
使用年數(shù) | 2 | 3 | 4 | 5 | 6 | 7 |
售價 | 20 | 12 | 8 | 6.4 | 4.4 | 3 |
3.00 | 2.48 | 2.08 | 1.86 | 1.48 | 1.10 |
下面是關于的散點圖:
(I)由散點圖看出,可以用線性回歸模型擬合和的關系,請用相關系數(shù)加以說明;
(II)求關于的回歸方程,并預測某輛型號二手汽車當使用年數(shù)為9年時,售價大約為多少?(、的值精確到)
(III)基于成本的考慮,該型號二手汽車的售價不得低于7118元,請根據(jù)(II)求出的回歸方程預測在收購該型號二手汽車時,車輛的使用年數(shù)不得超過多少年?
參考公式:,相關系數(shù).
參考數(shù)據(jù):,,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,a=btanA,且B為鈍角.
(1)證明:B﹣A= ;
(2)求sinA+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一副直角三角板(如圖1)拼接,將折起,得到三棱錐(如圖2).
(1)若分別為的中點,求證: 平面;
(2)若平面平面,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列{an}是等差數(shù)列,首項a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項和Sn>0成立的最大自然數(shù)n是( )
A.4005
B.4006
C.4007
D.4008
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人想?yún)⒓印吨袊娫~大會》比賽,籌辦方要從10首詩司中分別抽出3首讓甲、乙背誦,規(guī)定至少背出其中2首才算合格; 在這10首詩詞中,甲只能背出其中的7首,乙只能背出其中的8首
(1)求抽到甲能背誦的詩詞的數(shù)量的分布列及數(shù)學期望;
(2)求甲、乙兩人中至少且有一人能合格的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設{an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an}、{bn}的通項公式;
(2)求數(shù)列 的前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com