【題目】ABC中,角A、B、C對應的邊分別為a、b、c,已知

1)求cosB的值;

2)若b8,cos2A3cosB+C)=1,求ABC的面積.

【答案】1268

【解析】

1)利用正弦定理及誘導公式整理已知可得:,結(jié)合余弦定理得解。

2)化簡,cos2A3cosB+C)=1可得:2cos2A+3cosA20,即可求得cosAsinA,利用兩角和的正弦公式可得: ,再利用正弦定理列方程求得a3,再利用三角形面積公式計算得解。

解:(1)由,

由正弦定理得:,變形得,所以cosB

2)由cos2A3cosB+C)=12cos2A+3cosA20,解得cosA,∴A

sinA,又sinB

sinCsinA+B)=sinAcosB+cosAsinB,

由正弦定理得,得a3

所以三角形ABC的面積為absinC868

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 橢圓C過點P(1, ),直線PF1交y軸于Q,且 =2 ,O為坐標原點.
(1)求橢圓C的方程;
(2)設M是橢圓C的上頂點,過點M分別作直線MA,MB交橢圓C于A,B兩點,設這兩條直線的斜率分別為k1 , k2 , 且k1+k2=2,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知雙曲線 =1(a>0,b>0),A1、A2是實軸頂點,F(xiàn)是右焦點,B(0,b)是虛軸端點,若在線段BF上(不含端點)存在不同的兩點Pi=(1,2),使得△PiA1A2(i=1,2)構(gòu)成以A1A2為斜邊的直角三角形,則雙曲線離心率e的取值范圍是(
A.( ,
B.( ,
C.(1,
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)若,求函數(shù)的單調(diào)區(qū)間和最小值.

(2)若有兩個極值求實數(shù)的取值范圍。

(3)若,且,比較的大小,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列判斷錯誤的是

A. 若隨機變量服從正態(tài)分布,;

B. 組數(shù)據(jù)的散點都在上,則相關系數(shù);

C. 若隨機變量服從二項分布,

D. 的充分不必要條件;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的點(不與端點重合),F(xiàn)為DA上的點,N為BE的中點.

(Ⅰ)若M是EC的中點,AF=3FD,求證:FN∥平面MBD;
(Ⅱ)若平面MBD與平面ABD所成角(銳角)的余弦值為 ,試確定點M在EC上的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足.數(shù)列滿足,,且

(1)求數(shù)列的通項公式;

(2)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),,使,)成等差數(shù)列,若存在,求出所有滿足條件的,,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,若對任意成立,則下列命題中正確的命題個數(shù)是( )

(1)

(2)

(3)不具有奇偶性

(4)的單調(diào)增區(qū)間是

(5)可能存在經(jīng)過點的直線與函數(shù)的圖象不相交

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn , 若an+1+(﹣1)nan=n,則S40=

查看答案和解析>>

同步練習冊答案