某產(chǎn)品具有一定的時效性,在這個時效期內(nèi),由市場調(diào)查可知,在不做廣告宣傳且每件獲利元的前提下,可賣出件;若做廣告宣傳,廣告費為千元比廣告費為千元時多賣出件.
(Ⅰ)試寫出銷售量與的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)時,廠家應(yīng)生產(chǎn)多少件這種產(chǎn)品,做幾千元的廣告,才能獲利最大?
(Ⅰ);(Ⅱ)7875,5.
解析試題分析:(Ⅰ)由條件得到,然后用累加法得到;(Ⅱ)將代入,設(shè)獲利為元,從而得到.然后根據(jù)不等式,即做5千元的廣告,再由知廠家應(yīng)生產(chǎn)7875件這種產(chǎn)品.
試題解析:(Ⅰ)設(shè)表示廣告費為元時的銷售量,
由題意知,, ,,,
將上述各式相加得:
為所求.
(Ⅱ)當(dāng)時,設(shè)獲利為元,
由題意知 ;
欲使最大,則 ,此時.
即廠家應(yīng)生產(chǎn)7875件這種產(chǎn)品,做5千元的廣告,才能獲利最大.
考點:1.累加法求數(shù)列通項;2.數(shù)列的最大項求法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實數(shù),且按某種順序排列成等差數(shù)列.
(1)求實數(shù)的值;
(2)若等差數(shù)列的首項和公差都為,等比數(shù)列的首項和公比都為,數(shù)列和的前項和分別為,且,求滿足條件的自然數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知an=n×0.8n(n∈N*).
(1)判斷數(shù)列{an}的單調(diào)性;
(2)是否存在最小正整數(shù)k,使得數(shù)列{an}中的任意一項均小于k?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
觀察下列三角形數(shù)表,假設(shè)第n行的第二個數(shù)為an(n≥2,n∈N*).
(1)依次寫出第六行的所有6個數(shù);
(2)歸納出an+1與an的關(guān)系式并求出{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}(n∈N﹡)中,a1=0,當(dāng)3an<n2時,an+1=n2,當(dāng)3an>n2時,an+1=3an.求a2,a3,a4,a5,猜測數(shù)列的通項an并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的通項,.
(Ⅰ)求;
(Ⅱ)判斷數(shù)列的增減性,并說明理由;
(Ⅲ)設(shè),求數(shù)列的最大項和最小項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線,過上一點作一斜率為的直線交曲線于另一點(且,點列的橫坐標(biāo)構(gòu)成數(shù)列,其中.
(1)求與的關(guān)系式;
(2)令,求證:數(shù)列是等比數(shù)列;
(3)若(為非零整數(shù),),試確定的值,使得對任意,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項和為,滿足:.遞增的等比數(shù)列前項和為,滿足:.
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)設(shè)數(shù)列對,均有成立,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項均為正數(shù),為其前項和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的通項公式是,前項和為,求證:對于任意的正整數(shù),總有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com