下列命題中:

①命題,使得”,則是真命題.

②“若,則,互為相反數(shù)”的逆命題為假命題.

③命題”,則:“”.

④命題“若”的逆否命題是“若,則”.

其中正確命題的個(gè)數(shù)是(     )

A.0             B. 1              C.2               D.3

 

【答案】

A

【解析】

試題分析:對(duì)于命題①,當(dāng)時(shí),,所以是真命題,則為假命題,①錯(cuò)誤;對(duì)于命題②,“若,則,互為相反數(shù)”的逆命題為“若互為相反數(shù),則”,其為真命題,②錯(cuò)誤;對(duì)于命題③,命題”,則:“”,所以③錯(cuò)誤;對(duì)于命題④,命題“若”的逆否命題是“若,則”,所以④錯(cuò)誤.則以上命題都錯(cuò)誤,故選A.

考點(diǎn):本題考查的知識(shí)點(diǎn)是命題間的關(guān)系,及其真假性的關(guān)系,正確把握命題真假性的關(guān)系以及判斷命題的真假性是解題的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無(wú)實(shí)根”的否命題
(2)命題“△ABC中,AB=BC=CA,那么△ABC為等邊三角形”的逆命題
(3)命題“若a>b>0,則
3
a
3
b
>0”的逆否命題
(4)“若m>1,則mx2-2(m+1)x+(m-3)>0的解集為R”的逆命題
其中真命題的序號(hào)為
(1),(2),(3)
(1),(2),(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①有兩個(gè)面平行,其余各面都是平行四邊形所圍成的幾何體一定是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形所圍成的幾何體是棱錐;
③用一個(gè)平行于棱錐底面的平面去截棱錐,得到的幾何體叫棱臺(tái).
以上命題中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確命題的個(gè)數(shù)是
(1)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1則x2-3x+2≠0”
(2)設(shè)回歸直線方程
y
=1+2x中,x平均增加1個(gè)單位時(shí),y平均增加2個(gè)單位
(3)若p∧q為假命題,則p,q均為假命題
(4)對(duì)命題p:?x0∈R,使得x02+x0+1<0,則?p:?x∈R,均有x2+x+1≥0;( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

給出下列命題:
①有兩個(gè)面平行,其余各面都是平行四邊形所圍成的幾何體一定是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形所圍成的幾何體是棱錐;
③用一個(gè)平行于棱錐底面的平面去截棱錐,得到的幾何體叫棱臺(tái).
以上命題中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省保北十二縣市高一(下)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

給出下列命題:
①有兩個(gè)面平行,其余各面都是平行四邊形所圍成的幾何體一定是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形所圍成的幾何體是棱錐;
③用一個(gè)平行于棱錐底面的平面去截棱錐,得到的幾何體叫棱臺(tái).
以上命題中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案