已知均為給定的大于1的自然數(shù).設(shè)集合,集合
(1)當(dāng)時(shí),用列舉法表示集合;
(2)設(shè),,其中證明:若,則

(1);(2)詳見(jiàn)試題分析.

解析試題分析:(1)當(dāng)時(shí),采用列舉法可得集合;(2)先由已知寫(xiě)出的表達(dá)式:,,再作差可得,放縮法化為最后利用等比數(shù)列前項(xiàng)和公式求和,判斷出差式的符號(hào),證得結(jié)果.
(1)當(dāng)時(shí),可得,
(2)由,可得

考點(diǎn):1.集合的含義與表示;2.等比數(shù)列的前項(xiàng)和公式;3.不等式的證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知等比數(shù)列的前n項(xiàng)和為 ,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

己知等比數(shù)列所有項(xiàng)均為正數(shù),首,且成等差數(shù)列.
(I)求數(shù)列的通項(xiàng)公式;
(II)數(shù)列的前n項(xiàng)和為,若,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an }的前n項(xiàng)和為Sn,滿足an ¹ 0,,
(1)求證:
(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列, 滿足條件:,
(1)求證數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和,并求使得對(duì)任意N*都成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)求證: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且.
(1)求的通項(xiàng)公式;
(2)設(shè)恰有5個(gè)元素,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013·天津高考)已知首項(xiàng)為的等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且-2S2,S3,4S4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明Sn+(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的首項(xiàng)
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若,求最大正整數(shù)的值;
(3)是否存在互不相等的正整數(shù),使成等差數(shù)列,且成等比數(shù)列?如果存在,請(qǐng)給予證明;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案