【題目】某市有兩家大型石油煉化廠(chǎng),這兩家石油煉化廠(chǎng)所生產(chǎn)的成品油都要通過(guò)甲、乙兩條輸油管道輸送到各地進(jìn)行銷(xiāo)售.由于地理位置及兩家石油煉化廠(chǎng)的生產(chǎn)能力的不同,石油煉化廠(chǎng)生產(chǎn)的成品油通過(guò)甲、乙兩條輸油管道輸送時(shí)每噸的運(yùn)費(fèi)分別為1元和1.6元,石油煉化廠(chǎng)生產(chǎn)的成品油通過(guò)甲、乙兩條輸油管道輸送時(shí)每噸的運(yùn)費(fèi)分別為0.8元和1.5元.甲輸油管道每年最多能輸送290萬(wàn)噸成品油,乙輸油管道每年最多能輸送320萬(wàn)噸成品油.石油煉化廠(chǎng)每年生產(chǎn)180萬(wàn)噸成品油,石油煉化廠(chǎng)每年生產(chǎn)240萬(wàn)噸成品油.規(guī)定石油煉化廠(chǎng)通過(guò)甲輸油管道輸送的成品油與石油煉化廠(chǎng)通過(guò)甲輸油管道輸送的成品油的二倍之和不超過(guò)490萬(wàn)噸.問(wèn):兩家煉化廠(chǎng)采用什么樣的輸油方案,能使總的運(yùn)費(fèi)最少?
【答案】石油煉化廠(chǎng)通過(guò)甲輸油管道輸送90萬(wàn)噸成品油,通過(guò)乙輸油管道輸送90萬(wàn)噸成品油,石油煉化廠(chǎng)通過(guò)甲輸油管道輸送200萬(wàn)噸成品油,通過(guò)乙輸油管道輸送40萬(wàn)噸成品油時(shí),總運(yùn)費(fèi)最少.
【解析】
根據(jù)題意設(shè)出未知數(shù),設(shè)石油煉化廠(chǎng)通過(guò)甲輸油管道輸送萬(wàn)噸成品油,石油煉化廠(chǎng)通過(guò)甲輸油管道輸送萬(wàn)噸成品油,總運(yùn)費(fèi)為萬(wàn)元,列出不等式組及目標(biāo)函數(shù),利用數(shù)形結(jié)合求解出目標(biāo)最小值時(shí)x、y值即可.
設(shè)石油煉化廠(chǎng)通過(guò)甲輸油管道輸送萬(wàn)噸成品油,石油煉化廠(chǎng)通過(guò)甲輸油管道輸送萬(wàn)噸成品油,總運(yùn)費(fèi)為萬(wàn)元,則
.
應(yīng)滿(mǎn)足,即
作出上面的不等式組所表示的平面區(qū)域,如圖陰影部分所示:
設(shè)直線(xiàn)與的交點(diǎn)為,則.
把直線(xiàn)向上平移至經(jīng)過(guò)平面區(qū)域上的點(diǎn)時(shí),的值最小.
∵點(diǎn)的坐標(biāo)為,
∴石油煉化廠(chǎng)通過(guò)甲輸油管道輸送90萬(wàn)噸成品油,通過(guò)乙輸油管道輸送90萬(wàn)噸成品油,石油煉化廠(chǎng)通過(guò)甲輸油管道輸送200萬(wàn)噸成品油,通過(guò)乙輸油管道輸送40萬(wàn)噸成品油時(shí),總運(yùn)費(fèi)最少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)若在上單調(diào)遞増,求實(shí)數(shù)的取值范圍;
(2)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)的焦點(diǎn)為,斜率為正的直線(xiàn)過(guò)點(diǎn)交拋物線(xiàn)于、兩點(diǎn),滿(mǎn)足.
(1)求直線(xiàn)的斜率;
(2)過(guò)焦點(diǎn)與垂直的直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣a)cosx﹣sinx,g(x)x3ax2,a∈R
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)在區(qū)間(0,)上零點(diǎn)的個(gè)數(shù);
(2)令F(x)=f(x)+g(x),試討論函數(shù)y=F(x)極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,梯形與平行四邊形所在平面互相垂直, ,,,,.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判斷線(xiàn)段上是否存在點(diǎn),使得平面平面?若存在,求 出的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線(xiàn)圖.根據(jù)折線(xiàn)圖,下列結(jié)論正確的是( )
A. 月跑步平均里程的中位數(shù)為6月份對(duì)應(yīng)的里程數(shù)
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在8、9月
D. 1月至5月的月跑步平均里程相對(duì)于6月至11月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為(為參數(shù))。曲線(xiàn)的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn),的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,射線(xiàn)與曲線(xiàn)交于點(diǎn),射線(xiàn)與曲線(xiàn)交于點(diǎn),求的面積(其中為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|y=lg(x-)},B={x|-cx<0,c>0},若AB,則實(shí)數(shù)c的取值范圍是( )
A.(0,1]B.[1,+∞)
C.(0,1)D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取了40輛汽車(chē)在經(jīng)過(guò)路段上某點(diǎn)時(shí)的車(chē)速(km/h),現(xiàn)將其分成六段: , , , , , ,后得到如圖所示的頻率分布直方圖.
(Ⅰ)現(xiàn)有某汽車(chē)途經(jīng)該點(diǎn),則其速度低于80km/h的概率約是多少?
(Ⅱ)根據(jù)直方圖可知,抽取的40輛汽車(chē)經(jīng)過(guò)該點(diǎn)的平均速度約是多少?
(Ⅲ)在抽取的40輛且速度在(km/h)內(nèi)的汽車(chē)中任取2輛,求這2輛車(chē)車(chē)速都在(km/h)內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com