【題目】如圖,已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),點(diǎn)在準(zhǔn)線上的投影為,點(diǎn)是拋物線上一點(diǎn),且滿足.

1)若點(diǎn)坐標(biāo)是,求線段中點(diǎn)的坐標(biāo);

2)求面積的最小值及此時(shí)直線的方程.

【答案】1;(2)最小值是16,此時(shí)直線的方程是.

【解析】

1)設(shè),,,,由題意得,直線,與拋物線方程聯(lián)立,則可得的值,再根據(jù),均在拋物線上,代入并作差,可得的中點(diǎn)坐標(biāo)與斜率的關(guān)系,再利用,求得線段中點(diǎn)的坐標(biāo).

2)將直線的方程用表示出來(lái),并與拋物線方程聯(lián)立,再根據(jù)弦長(zhǎng)公式求出,利用點(diǎn)到直線的距離公式,求出點(diǎn)到直線的距離為,運(yùn)用,結(jié)合均值不等式可求得面積的最小值及此時(shí)直線的方程.

解:(1)設(shè),,,由題意得

直線,又,得,則,

,得

,又,即

解得,即,

,得,,

,,線段中點(diǎn)的坐標(biāo)為.

2)由(1)可知,

設(shè)直線方程為,即

,所以

點(diǎn)到直線的距離是

所以

等號(hào)成立當(dāng)且,解得.

此時(shí),.

因此面積的最小值是16,

此時(shí)直線的方程是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,直線為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程及曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)直角坐標(biāo)為,直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上,點(diǎn)滿足以為直徑的圓過(guò)橢圓的上頂點(diǎn).

1)求橢圓的方程;

2)已知直線過(guò)右焦點(diǎn)與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得為定值?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)若是函數(shù)的一個(gè)極值點(diǎn),求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),對(duì)于任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費(fèi)用,需了解年研發(fā)費(fèi)用(單位:千萬(wàn)元)對(duì)年銷售量(單位:千萬(wàn)件)的影響,統(tǒng)計(jì)了近10年投入的年研發(fā)費(fèi)用與年銷售量 的數(shù)據(jù),得到散點(diǎn)圖如圖所示:

1)利用散點(diǎn)圖判斷,(其中為大于0的常數(shù))哪一個(gè)更適合作為年研發(fā)費(fèi)用和年銷售量的回歸方程類型(只要給出判斷即可,不必說(shuō)明理由).

2)對(duì)數(shù)據(jù)作出如下處理:令,得到相關(guān)統(tǒng)計(jì)量的值如下表:

根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

3)已知企業(yè)年利潤(rùn)(單位:千萬(wàn)元)與的關(guān)系為(其中),根據(jù)(2)的結(jié)果,要使得該企業(yè)下一年的年利潤(rùn)最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?

附:對(duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體中,是邊長(zhǎng)為2的正三角形,是直角三角形,.

1)證明:平面平面

2)若過(guò)的平面交的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的左焦點(diǎn)為,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且APF1周長(zhǎng)的最小值為6,則雙曲線的離心率為(  )

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn),且為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).

1)用表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;

2)求的面積,證明的面積與、無(wú)關(guān),只與有關(guān);

3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、,再作與平行的切線,切點(diǎn)分別為,小張馬上寫出了的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說(shuō)出理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案