【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的極值.
【答案】(1)遞增區(qū)間為, ;遞減區(qū)間是(2)見解析
【解析】
直接利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.(2)對(duì)a分四種情況討論求函數(shù)的極值.
(1)的定義域?yàn)?/span>,
當(dāng)時(shí),
所以當(dāng)時(shí),,函數(shù)單調(diào)遞增
當(dāng)時(shí),,函數(shù)單調(diào)遞減
當(dāng)時(shí),,函數(shù)單調(diào)遞增
綜上,函數(shù)遞增區(qū)間為, ;遞減區(qū)間是
(2)
當(dāng)時(shí),單調(diào)遞增,
,函數(shù)單調(diào)遞減.
所以在區(qū)間上有極大值,無極小值
當(dāng)時(shí),,單調(diào)遞增;,
單調(diào)遞減;,單調(diào)遞增
所以,.
當(dāng)時(shí),在區(qū)間上有,
單調(diào)遞增,無極值
當(dāng)時(shí),,單調(diào)遞增;,
單調(diào)遞減;,單調(diào)遞增
所以,.
綜上,當(dāng)時(shí),極大值為,無極小值;
當(dāng)時(shí),極大值為,極小值為;
當(dāng)時(shí),無極值;
當(dāng)時(shí),極大值為,極小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品進(jìn)行出售,當(dāng)這種產(chǎn)品定價(jià)為每噸1000元時(shí),每月可售出產(chǎn)品100噸.當(dāng)每噸價(jià)格每增加20元時(shí),月售出量將會(huì)減少1噸.產(chǎn)品每噸生產(chǎn)成本400元,月固定成本為20000元.
(Ⅰ)當(dāng)產(chǎn)品每噸定價(jià)為1200元時(shí),該公司月利潤(rùn)是多少?
(Ⅱ)當(dāng)產(chǎn)品每噸定價(jià)為多少元時(shí),該公司的月利潤(rùn)最大?最大月利潤(rùn)是多少?(利潤(rùn)=總收入-生產(chǎn)成本-固定成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線和虛線畫出的是某幾何體的三視圖,則該幾何休的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,為,軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)在直線上,且滿足,.
(1)求點(diǎn)的軌跡方程;
(2)記點(diǎn)的軌跡為曲線,為曲線與正半軸的交點(diǎn),、為曲線上與不重合的兩點(diǎn),且直線與直線的斜率之積為,試探究面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線是過點(diǎn),傾斜角為的直線,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ)求曲線的普通方程和曲線的一個(gè)參數(shù)方程;
(Ⅱ)曲線與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)纜車示意圖,該纜車的半徑為4.8 m,圓上最低點(diǎn)與地面的距離為0.8 m,纜車每60 s轉(zhuǎn)動(dòng)一圈,圖中OA與地面垂直,以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)動(dòng)θ角到OB,設(shè)B點(diǎn)與地面的距離為h m.
(1)求h與θ之間的函數(shù)解析式;
(2)設(shè)從OA開始轉(zhuǎn)動(dòng),經(jīng)過t s達(dá)到OB,求h與t之間的函數(shù)解析式,并計(jì)算經(jīng)過45 s后纜車距離地面的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的長(zhǎng)軸為,過點(diǎn)的直線與軸垂直,橢圓的離心率, 為橢圓的左焦點(diǎn),且.
(Ⅰ)求此橢圓的方程;
(Ⅱ)設(shè)是此橢圓上異于的任意一點(diǎn), , 為垂足,延長(zhǎng)到點(diǎn)使得.連接并延長(zhǎng)交直線于點(diǎn), 為的中點(diǎn),判定直線與以為直徑的圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為圓外一點(diǎn),若圓上存在一點(diǎn),使得,則正數(shù)的取值范圍是____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com