【題目】某田徑隊有三名短跑運動員,根據(jù)平時訓練情況統(tǒng)計甲、乙、丙三人100米跑(互不影響)的成績合格的概率分別為,,若對這三名短跑運動員的100米跑的成績進行一次檢測.

1)求三人都合格的概率;

2)求三人都不合格的概率;

3)求出現(xiàn)幾人合格的概率最大.

【答案】123)一人

【解析】

1)根據(jù)相互獨立事件概率計算公式,計算出三人都合格的概率.

2)根據(jù)相互獨立事件概率計算公式,計算出三人都不合格的概率.

3)分別求得恰有人,恰有人合格的概率,結合(1)(2)求得出現(xiàn)恰有一人合格的概率最大.

記甲、乙、丙三人100米跑成績合格分別為事件,顯然事件相互獨立,則,,.

設恰有k人合格的概率為.

1)三人都合格的概率:

.

2)三人都不合格的概率:

.

3)恰有兩人合格的概率:

.

恰有一人合格的概率:

.

綜合(1)(2)可知最大.

所以出現(xiàn)恰有一人合格的概率最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有5個大小質地完全相同的球,其中2個紅球、3個黃球,從中不放回地依次隨機摸出2個球,求下列事件的概率:

1A=“第一次摸到紅球”;

2B=“第二次摸到紅球”;

3AB=“兩次都摸到紅球”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,動物園要圍成相同面積的長方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網圍成.

(1)現(xiàn)有可圍長網的材料,每間虎籠的長、寬各設計為多少時,可使每間虎籠面積最大?

(2)若使每間虎籠面積為,則每間虎籠的長、寬各設計為多少時,可使圍成四間虎籠的鋼筋網總長最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的頂點為O0,0),焦點F0,1

)求拋物線C的方程;

)過F作直線交拋物線于A、B兩點.若直線OAOB分別交直線ly=x﹣2M、N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(1)寫出直線l普通方程和曲線C的直角坐標方程;

(2)過點且與直線平行的直線, 兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有紅、白球各一個,每次任取一個,有放回地摸三次,求基本事件的個數(shù)n,寫出所有基本事件的全集I,并計算下列事件的概率:

1)三次顏色恰有兩次同色;

2)三次顏色全相同;

3)三次摸到的紅球多于白球.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為矩形,且平面, ,的中點.

(1)求證:;

(2)求三棱錐的體積;

(3)探究在上是否存在點,使得平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調區(qū)間;

(2)若關于的不等式對一切恒成立,求實數(shù)的取值范圍;

(3)求證:對,都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在學習函數(shù)時,我們經歷了“確定函數(shù)的表達式利用函數(shù)圖象研究其性質——運用函數(shù)解決問題“的學習過程,在畫函數(shù)圖象時,我們通過列表、描點、連線的方法畫出了所學的函數(shù)圖象.同時,我們也學習過絕對值的意義

結合上面經歷的學習過程,現(xiàn)在來解決下面的問題:

在函數(shù)中,當時,;當時,

1)求這個函數(shù)的表達式;

2)在給出的平面直角坐標系中,請直接畫出此函數(shù)的圖象并寫出這個函數(shù)的兩條性質;

3)在圖中作出函數(shù)的圖象,結合你所畫的函數(shù)圖象,直接寫出不等式的解集.

查看答案和解析>>

同步練習冊答案