【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫出圓 的直角坐標(biāo)方程;
(2) 為直線 上一動(dòng)點(diǎn),當(dāng) 到圓心 的距離最小時(shí),求 的直角坐標(biāo).

【答案】
(1)解:由 ,得 ,從而有

所以


(2)解:設(shè) ,又 ,

故當(dāng) 時(shí), 取得最小值,此時(shí) 點(diǎn)的坐標(biāo)為


【解析】(1)將方程兩邊同時(shí)乘以,然后根據(jù)x2+y2,y=sin即可求解;(2)根據(jù)圓C的直角坐標(biāo)方程寫出圓心C的坐標(biāo),根據(jù)直線的參數(shù)方程可設(shè)出點(diǎn)P的坐標(biāo)為(3+t,t),然后根據(jù)兩點(diǎn)間距離公式寫出即可求出的最小值及取得最小值時(shí)x的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線的參數(shù)方程的相關(guān)知識(shí)可以得到問題的答案,需要掌握經(jīng)過點(diǎn),傾斜角為的直線的參數(shù)方程可表示為為參數(shù)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=﹣1, =Sn , 求數(shù)列{an}的前n項(xiàng)和Sn= , 通項(xiàng)公式an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、分別是線段、、的中點(diǎn),分別以、、為折痕將四個(gè)等邊三角形折起,使得、、、四點(diǎn)重合于一點(diǎn),得到一個(gè)四棱錐.對(duì)于下面四個(gè)結(jié)論:

為異面直線; 直線與直線所成的角為

平面; 平面平面;

其中正確結(jié)論的個(gè)數(shù)有(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是對(duì)數(shù)函數(shù).

(1) 若函數(shù),討論的單調(diào)性;

(2),不等式的解集非空,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:

)求, , 的值.

)求證:數(shù)列是等比數(shù)列.

)令,如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) , ,(a>0).若對(duì)任意實(shí)數(shù)x1 , 都存在正數(shù)x2 , 使得g(x2)=f(x1)成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為

1)求數(shù)列的通項(xiàng)公式;

2將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列請(qǐng)直接寫出數(shù)列的通項(xiàng)公式;

3,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案