已知f(x)=(1+mx)2013=a+a1x+a2x2+…+a2013x2013(x∈R)
(1)若m=,求m、a及a1的值;
(2)若離散型隨機變量X~B(4,)且m=EX時,令bn=(-1)nnan,求數(shù)列{bn}的前2013項的和T2013
【答案】分析:(1)求出原函數(shù),即可求得積分,利用賦值法,可求a及a1的值;
(2)利用二項分布的期望公式,可求m的值,利用函數(shù)關系式,兩邊求導,再賦值,即可得到結論.
解答:解:(1)∵
==1,
則:,
令x=0得:a=1,且;
(2)∵離散型隨機變量且m=EX
∴m=2,

則兩邊取導得:
令x=-1得:4026(1-2)2012=a1-2a2+3a3-4a4…+2013a2013
即:-a1+2a2-3a3+4a4-…-2013a2013=-4026;
∴數(shù)列{bn}的前2013項的和T2013=-4026.
點評:本題考查定積分,考查二項式定理的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)內(nèi)為單調(diào)增函數(shù),求a的取值范圍;
(II) 若函數(shù)f(x)在x=O處取得極小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=a-
2
2x+1
是定義在R上的奇函數(shù),則f-1(-
3
5
)的值是( 。
A、
3
5
B、-2
C、
1
2
D、
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、已知f(x)=asin2x+btanx+1,且f(-2)=4,那么f(π+2)=
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=xlnx
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=(x2+1)(x+a)
(1)當x∈(0,+∞)時,函數(shù)y=f(x)的圖象上任意一點的切線斜率恒大于1,求a的取值范圍.
(2)若y=f(x)在x∈(0,+∞)上有極值點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案