【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊, ,且 .
(1)試判斷△ABC的形狀;
(2)若 ,求 的取值范圍.
【答案】
(1)解:由條件及正弦定理,
得:(sinC﹣sin2A)sinB=(sinC﹣sinB)sin2A,
即sinCsinB﹣sin2AsinB=sinCsin2A﹣sinBsin2A,
∴sinCsinB=sinCsin2A,又sinC≠0,
∴sinB=sin2A,
∴B=2A,或B+2A=π,
①當(dāng)B=2A時(shí),
∵ ,
∴B+A=3A>π導(dǎo)出矛盾,則B=2A應(yīng)舍去.
②當(dāng)B+2A=π時(shí),又A+B+C=π,
∴A=C合理,
綜上判斷△ABC為等腰三角形
(2)解:在等腰△ABC中,取AC的中點(diǎn)D,
由 得|BD|=3,
又由(1)知 ,
則 =
【解析】(1)根據(jù)正弦定理將等式進(jìn)行邊角互化后得:(sinC﹣sin2A)sinB=(sinC﹣sinB)sin2A,整理后可得sinCsinB=sinCsin2A,又sinC≠0,
即sinB=sin2A,B=2A,或B+2A=π綜上可判斷出△ABC為等腰三角形,(2)取AC的中點(diǎn)為D,由等式得出BD=3,由向量的數(shù)量積公式表示出,從而得到取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) f(x)=2x﹣ 的定義域?yàn)椋?,1](a為實(shí)數(shù)).
(Ⅰ)當(dāng)a=﹣1時(shí),求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍;
(Ⅲ)求函數(shù)y=f(x)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線C.為方便游客光,擬過(guò)曲線C上的某點(diǎn)分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價(jià)分別為5萬(wàn)元/百米,40萬(wàn)元/百米,建立如圖所示的直角坐標(biāo)系xoy,則曲線符合函數(shù)y=x+ (1≤x≤9)模型,設(shè)PM=x,修建兩條道路PM,PN的總造價(jià)為f(x)萬(wàn)元,題中所涉及的長(zhǎng)度單位均為百米.
(1)求f(x)解析式;
(2)當(dāng)x為多少時(shí),總造價(jià)f(x)最低?并求出最低造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(﹣1,0),B(1,1),C(2,0),點(diǎn)P是平面直角坐標(biāo)系xOy上一點(diǎn),且 =m (m,n∈R),
(1)若m=1,且 ∥ ,試求實(shí)數(shù)n的值;
(2)若點(diǎn)P在△ABC三邊圍成的區(qū)域(含邊界)上,求m+3n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示,f(x)的圖象與x軸切于N點(diǎn),則下列選項(xiàng)判斷錯(cuò)誤的是( )
A.
B.
C.
D.|MN|=π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(I)如果 在 處取得極值,求 的值.
(II)求函數(shù) 的單調(diào)區(qū)間.
(III)當(dāng) 時(shí),過(guò)點(diǎn) 存在函數(shù)曲線 的切線,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在(1+x+x2)n= x x2+… xr+… x2n﹣1 x2n的展開(kāi)式中,把D ,D ,D …,D …,D 叫做三項(xiàng)式系數(shù)
(1)求D 的值
(2)根據(jù)二項(xiàng)式定理,將等式(1+x)2n=(1+x)n(x+1)n的兩邊分別展開(kāi)可得,左右兩邊xn的系數(shù)相等,即C =(C )2+(C )2+(C )2+…+(C )2 , 利用上述思想方法,請(qǐng)計(jì)算D C ﹣D C +D C ﹣…+(﹣1)rD C +.. C C 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)16枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購(gòu)進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝還是17枝?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知 = .
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com