為使關(guān)于x的不等式對(duì)一切實(shí)數(shù)x都成立,則a的范圍是       ;

 

【答案】

.

【解析】

試題分析:當(dāng)2-a=0時(shí),不等式化為4>0,恒成立,所以a=2;

當(dāng)時(shí),關(guān)于x的不等式對(duì)一切實(shí)數(shù)x都成立,

,解得;

綜上知,a的范圍是.

考點(diǎn):本題主要考查一元二次不等式的解法。

點(diǎn)評(píng):含參數(shù)的不等式,易錯(cuò)題。當(dāng)二次項(xiàng)系數(shù)含參數(shù),一定要注意討論其是否為零。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn),已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)當(dāng)a=1,b=-2求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解關(guān)于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省黃岡中學(xué)、襄樊五中2007屆高三年級(jí)11月聯(lián)考、數(shù)學(xué)試題(理) 題型:022

若存在實(shí)數(shù)k,使關(guān)于x的不等式(xk)2x對(duì)一切x∈[1,m]恒成立,則m的最大值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn),已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)當(dāng)a=1,b=-2求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,令數(shù)學(xué)公式,解關(guān)于x的不等式數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn),已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)當(dāng)a=1,b=-2求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解關(guān)于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案