已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是 (  )
A.2    B.6  C.4  D.12

C

解析試題分析:由橢圓的定義知△ABC的周長為,由橢圓方程知,所以,故C正確。
考點:橢圓的定義

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知圓的圓心為拋物線的焦點,直線與圓相切,則該圓的方程為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若雙曲線右頂點為,過其左焦點軸的垂線交雙曲線于兩點,且,則該雙曲線離心率的取值范圍為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若雙曲線的左、右焦點分別為,線段被 拋物線的焦點分成長度之比為2︰1的兩部分線段,則此雙曲線的離心率為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設斜率為2的直線過拋物線的焦點F,且和軸交于點A,若△OAF(O為坐標原點)的面積為4,則拋物線方程為(    ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的兩個焦點為F1(-,0)、F2(,0),M是此雙曲線上的一點,且滿足則該雙曲線的方程是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的頂點與焦點分別是橢圓的焦點和頂點,若雙曲線的兩條漸近線與橢圓的焦點構成的四邊形恰為正方形,則橢圓的離心率為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線 的左、右焦點分別為,以為直徑的圓與雙曲線漸近線的一個交點為,則此雙曲線的方程為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的離心率,則它的漸近線方程為(     )

A. B. C. D.

查看答案和解析>>

同步練習冊答案