在極坐標(biāo)系中, O為極點(diǎn), 半徑為2的圓C的圓心的極坐標(biāo)為
(1)求圓C的極坐標(biāo)方程;
(2)在以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點(diǎn),已知定點(diǎn),求|MA|·|MB|.

(1) (2)

解析試題分析:
(1)把圓心極坐標(biāo)轉(zhuǎn)化為直角坐標(biāo),在直角坐標(biāo)系里求出圓的方程,再利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,把圓的直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程,化簡(jiǎn)即可得到最終結(jié)果.
(2)把直線l的參數(shù)方程轉(zhuǎn)化為普通方程后,利用聯(lián)立方程式與韋達(dá)定理相結(jié)合,采用舍而不求的方式求出|MA|·|MB|的值.
試題解析:(1)由題得,圓心的直角坐標(biāo)為,所以圓的直角坐標(biāo)方程為,再利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式可得,化簡(jiǎn)可得,故圓的極坐標(biāo)方程為.
(2)由題得直線的普通方程為,設(shè)A(),B(),聯(lián)立圓與直線方程得.又|MA|·|MB|
考點(diǎn):極坐標(biāo) 參數(shù)方程 圓的方程

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(其中為參數(shù),),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為
(1)把曲線的方程化為直角坐標(biāo)方程;
(2)若曲線上恰有三個(gè)點(diǎn)到曲線的距離為,求曲線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系中,求圓ρ=2cosθ的垂直于極軸的兩條切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫(xiě)出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,圓的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.求:
(1)圓的直角坐標(biāo)方程;
(2)圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ2=,以極點(diǎn)為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系.
(1)求曲線C的直角坐標(biāo)方程及參數(shù)方程.
(2)若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求x+2y的最小值,并求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為(t為參數(shù)),P為C1上的動(dòng)點(diǎn),Q為線段OP的中點(diǎn).
(1)求點(diǎn)Q的軌跡C2的方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸(兩坐標(biāo)系取相同的長(zhǎng)度單位)的極坐標(biāo)系中,N為曲線p=2sinθ上的動(dòng)點(diǎn),M為C2與x軸的交點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ=4cos θ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為
(Ⅰ)求直線的極坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于兩點(diǎn),求

查看答案和解析>>

同步練習(xí)冊(cè)答案