如圖,在幾何體P-ABCD中,四邊形ABCD為矩形,PA⊥平面ABCD, AB=PA=2.
(1)當AD=2時,求證:平面PBD⊥平面PAC;
(2)若PC與AD所成角為45°,求幾何體P-ABCD的體積.
科目:高中數(shù)學 來源: 題型:
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在邊長為12的正方形A1 AA′A1′中,點B、C在線段AA′上,且AB = 3,BC = 4,作BB1∥AA1,分別交A1A1′、AA1′于點B1、P;作CC1∥AA1,分別交A1A1′、AA1′于點C1、Q;將該正方形沿BB1、CC1折疊,使得A′A1′ 與AA1重合,構(gòu)成如圖所示的三棱柱ABC—A1B1C1,在三棱柱ABC—A1B1C1中, (Ⅰ)求證:AB⊥平面BCC1B1; (Ⅱ)求面PQA與面ABC所成的銳二面角的大。á螅┣竺APQ將三棱柱ABC—A1B1C1分成上、下兩部分幾何體的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北武漢市高三2月調(diào)研測試理科數(shù)學試卷(解析版) 題型:選擇題
如圖,在長方體ABCD-A1B1C1D1中,E,H分別是棱A1B1,D1C1上的點(點E與B1不重合),且EH∥A1D1,過EH的平面與棱BB1,CC1相交,交點分別為F,G.設(shè)AB=2AA1=2a.在長方體ABCD-A1B1C1D1內(nèi)隨機選取一點,記該點取自于幾何體A1ABFE-D1DCGH內(nèi)的概率為P,當點E,F分別在棱A1B1,BB1上運動且滿足EF=a時,則P的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆四川省高二上學期期中考試數(shù)學試卷(解析版) 題型:選擇題
(文)如圖,在棱長為4的正方體ABCD—A′B′C′D′中,E、F分別是AD、A′D′的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面A′B′C′D′?上運動,則線段MN的中點P的軌跡(曲面)與二面角A-A′D′-B′所圍成的幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:福建省高考真題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com