【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.

【答案】
(1)解:解:m、n∈R+,

當x≥ 時,f(x)=x+m+2x﹣n=3x+m﹣n,當x= 時,取得最小值m+ ;

當﹣m≤x≤ 時,f(x)=x+m+n﹣2x=﹣x+m+n,當x= 時,取得最小值m+

當x≤﹣m時,f(x)=﹣(x+m)﹣(2x﹣n)=﹣3x﹣m+n,當x=﹣m時,取得最小值2m+n.

∵2m+n﹣ =m+ >0.

∴x= 時,f(x)的最小值為m+


(2)解:證明:由(1)可知:m+ =2,m、n∈R+,

∴4(m2+ )≥2 =8,當且僅當m= =1時取等號


【解析】(1)對x與﹣m, 的大小關系分類討論,利用一次函數(shù)的單調(diào)性即可得出.(2)利用不等式的基本性質(zhì)即可得出.
【考點精析】利用函數(shù)的最值及其幾何意義對題目進行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.

(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大;
(3)試在線段AC上一點P,使得PF與CD所成的角是60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生寒假閱讀名著的情況,一名教師對某班級的所有學生進行了調(diào)查,調(diào)查結果如下表:

本數(shù)
人數(shù)
性別

0

1

2

3

4

5

男生

0

1

4

3

2

2

女生

0

0

1

3

3

1

(I)從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學生中任選4人,設選到的男學生人數(shù)為 X,求隨機變量 X的分布列和數(shù)學期望;
(III)試判斷男學生閱讀名著本數(shù)的方差 與女學生閱讀名著本數(shù)的方差 的大小(只需寫出結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處有極大值,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求曲線在點處的切線方程;

2)當時,討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n都有an是n與Sn的等差中項,bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項bn
(2)若數(shù)列{Cn}滿足Cn= 且數(shù)列{C }的前n項和為Tn , 證明Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>1,函數(shù)f(x)=,g(x)=x+4, x1[1,3],x2[0,3],使得f(x1)=g(x2)成立,則a的取值為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若△ABC三個內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.

查看答案和解析>>

同步練習冊答案