【題目】在如圖所示的多面體中,平面平面,四邊形為邊長(zhǎng)為2的菱形, 為直角梯形,四邊形為平行四邊形,且, .

(1)若, 分別為 的中點(diǎn),求證: 平面;

(2)若, 與平面所成角的正弦值為,求二面角的余弦值.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1)第(1)問(wèn),轉(zhuǎn)化成證明平面 ,再轉(zhuǎn)化成證明.(2)第(2)問(wèn),先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.

試題解析:

(1)連接,因?yàn)樗倪呅?/span>為菱形,所以.

因?yàn)槠矫?/span>平面,平面平面, 平面 ,所以平面.

平面,所以.

因?yàn)?/span>,所以.

因?yàn)?/span>,所以平面.

因?yàn)?/span>分別為, 的中點(diǎn),所以,所以平面

(2)設(shè),由(1)得平面.

, ,得 .

過(guò)點(diǎn),與的延長(zhǎng)線交于點(diǎn),取的中點(diǎn),連接, ,如圖所示,

,所以為等邊三角形,所以,又平面平面,平面平面, 平面,故平面.

因?yàn)?/span>為平行四邊形,所以,所以平面.

又因?yàn)?/span>,所以平面.

因?yàn)?/span>,所以平面平面.

由(1),得平面,所以平面,所以.

因?yàn)?/span>,所以平面,所以與平面所成角.

因?yàn)?/span>, ,所以平面, 平面,因?yàn)?/span>,所以平面平面.

所以 ,解得.

在梯形中,易證,分別以 , 的正方向?yàn)?/span>軸, 軸, 軸的正方向建立空間直角坐標(biāo)系.

, , , , ,

,及,得,所以, , .

設(shè)平面的一個(gè)法向量為,由,得m=(3,1,2)

設(shè)平面的一個(gè)法向量為,由,得.

所以

又因?yàn)槎娼?/span>是鈍角,所以二面角的余弦值是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的圖象關(guān)于直線對(duì)稱,它的最小正周期為π,則(   )

A. f(x)的圖象過(guò)點(diǎn)(0,) B. f(x)上是減函數(shù)

C. f(x)的一個(gè)對(duì)稱中心是 D. f(x)的一個(gè)對(duì)稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)要建一個(gè)八邊形的休閑區(qū),如圖所示,它的主要造型平面圖是由兩個(gè)相同的矩形構(gòu)成的面積為的十字形區(qū)域.計(jì)劃在正方形上建一個(gè)花壇,造價(jià)為4200/,在四個(gè)相同的矩形(圖中陰影部分)上鋪設(shè)花崗巖地面,造價(jià)為210/,再在四個(gè)等腰直角三角形上鋪設(shè)草坪,造價(jià)為80/.求當(dāng)的長(zhǎng)度為多少時(shí),建設(shè)這個(gè)休閑區(qū)的總價(jià)最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

合計(jì)

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?

P(K2≥x0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

x0

0.455

0.708

1.323

2.072

2.076

3.841

5.024

6.635

7.879

10.828

參考公式及數(shù)據(jù):K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列命題的真假并說(shuō)明理由.

1)某個(gè)整數(shù)不是偶數(shù),則這個(gè)數(shù)不能被4整除;

2)若,且,則,且

3)合數(shù)一定是偶數(shù);

4)若,則;

5)兩個(gè)三角形兩邊一對(duì)角對(duì)應(yīng)相等,則這兩個(gè)三角形全等;

6)若實(shí)系數(shù)一元二次方程滿足,那么這個(gè)方程有兩個(gè)不相等的實(shí)根;

7)若集合,,滿足,則;

8)已知集合,,如果,那么

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線),直線與拋物線交于 (點(diǎn)在點(diǎn)的左側(cè))兩點(diǎn),且.

(1)求拋物線兩點(diǎn)處的切線方程;

(2)若直線與拋物線交于兩點(diǎn),且的中點(diǎn)在線段上, 的垂直平分線交軸于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x1x2是函數(shù)f(x)aln xbx2x的兩個(gè)極值點(diǎn).

(1)試確定常數(shù)ab的值;

(2)判斷x1x2是函數(shù)f(x)的極大值點(diǎn)還是極小值點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求二次函數(shù)分別在下列定義域上的最大值和最小值.

1R;

2

3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD為矩形,AD⊥平面ABEAE=EB=BC,FCE上的點(diǎn),且BF⊥平面ACE

1)求證:AEBE;

2)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE

查看答案和解析>>

同步練習(xí)冊(cè)答案