分析:(1))由已知數(shù)列a1=1,an+1=an2+4an+2,變形為an+1+2=(an+2)2>0,兩邊取對(duì)數(shù)可得ln(an+1+2)=2ln(an+2),轉(zhuǎn)化為等比數(shù)列即可得出;
(2)利用(1)變形,再利用“裂項(xiàng)求和”即可得出.
解答:解:(1)∵數(shù)列a
1=1,a
n+1=a
n2+4a
n+2,
∴
an+1+2=(an+2)2>0,
∴兩邊取對(duì)數(shù)可得ln(a
n+1+2)=2ln(a
n+2)
∴數(shù)列{ln(a
n+2)}是以ln(a
1+2)=ln3為首項(xiàng),2為公比的等比數(shù)列.
∴
ln(an+2)=2n-1ln3,
∴
an+2=32n-1,即
an=32n-1-2.
(2)∵
an+1=+4an+2,
∴
an+1+1=+4an+3=(a
n+1)(a
n+3),
∴
==
(-),
∴
=-,
∴b
n=
+=
2(-),
∴S
n=
2[(-)+(-)+…+
(-)]=
2(-)=
2(-)=
1-.
∵n∈N
*,∴
32n-1≥32-1=8>0,
∴S
n<1.
點(diǎn)評(píng):正確變形轉(zhuǎn)化為等比數(shù)列、“裂項(xiàng)求和”等是解題的關(guān)鍵.