【題目】已知直線l與拋物線交于點(diǎn)A,B兩點(diǎn),與x軸交于點(diǎn)M,直線OA,OB的斜率之積為.
(1)證明:直線AB過定點(diǎn);
(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點(diǎn),O為坐標(biāo)原點(diǎn),求|OE||OF|的值.
【答案】(1)(4,0) ;(2)8.
【解析】
(1)設(shè)出直線AB的方程,聯(lián)立拋物線得到關(guān)于y的一元二次方程,根據(jù)斜率之積為,結(jié)合韋達(dá)定理代入化簡(jiǎn)即可得到AB過定點(diǎn)。
(2)表示出以A、B為直徑的圓的方程,設(shè)出E、F的坐標(biāo),結(jié)合韋達(dá)定理即可表示出,進(jìn)而求得的值。
(1)設(shè)直線,A(x1,y1),B(x2,y2)
由消去得,
則,那么滿足Δ=4m2+8n>0
即,即AB過定點(diǎn)(4,0),
(2)∵以為直徑端點(diǎn)的圓的方程為
設(shè),則是方程
即的兩個(gè)實(shí)根
∴有
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線與交于,兩點(diǎn),.
(1)求的方程;
(2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線l和圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l和圓C相交于A,B兩點(diǎn),求弦AB與其所對(duì)劣弧所圍成的圖形面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p>0,q>0,隨機(jī)變量ξ的分布列如下:
ξ | p | q |
P | q | p |
若E(ξ)= .則p2+q2=( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點(diǎn),若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F1、F2是橢圓C1的左右焦點(diǎn),橢圓C1與雙曲線C2的漸近線交于點(diǎn)P,PF1⊥PF2 , 橢圓C1與雙曲線C2的離心率分別為e1、e2 , 則( )
A.e22=
B.e22=
C.e22=
D.e22=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x﹣2,g(x)=2x﹣5,則不等式|f(x)|+|g(x)|≤2的解集為;|f(2x)|+|g(x)|的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)給人們的生活帶來便利的同時(shí),也給青少年的成長(zhǎng)帶來不利的影響,有人沉迷于手機(jī)游戲無法自拔,嚴(yán)重影響了自己的學(xué)業(yè),某學(xué)校隨機(jī)抽取個(gè)班,調(diào)查各班帶手機(jī)來學(xué)校的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為將數(shù)據(jù)分組成,,…,,時(shí),所作的頻率分布直方圖是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a>b>0)的離心率 ,且點(diǎn) 在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線l與橢圓E交于A、B兩點(diǎn),且線段AB的垂直平分線經(jīng)過點(diǎn) .求△AOB(O為坐標(biāo)原點(diǎn))面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com