給出命題p:方程
x2
a
+
y2
2-a
=1表示焦點(diǎn)在y軸上的橢圓;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).
(1)若命題p是真命題,求a的取值范圍;
(2)如果命題“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍.
分析:(1)根據(jù)焦點(diǎn)在y軸上橢圓的方程特征,建立關(guān)于a的不等式組,解之即可得到a的取值范圍;
(2)先求出當(dāng)命題q為真時(shí),實(shí)數(shù)a的取值范圍為(-∞,
1
2
)∪(
5
2
,+∞).而命題“p∨q”為真且“p∧q”為假,
說(shuō)明p、q中一個(gè)為真命題且另一個(gè)為假命題,由此分“p真q假”和“p假q真”兩種情況討論加以討論,分別建立關(guān)于a的不等式組,解不等式組后再取并集,即可得到a的取值范圍.
解答:解:(1)若命題p為真,則有
a>0
2-a>0
2-a>a

解之得0<a<1,即實(shí)數(shù)a的取值范圍為(0,1);
(2)若命題q為真,則有
△=(2a-3)2-4>0,解之得a
1
2
或a
5
2

∵命題“p∨q”為真,“p∧q”為假
∴p、q中一個(gè)為真命題,另一個(gè)為假命題,
①當(dāng)p真q假時(shí),
0<a<1
1
2
≤a≤
5
2
,得
1
2
≤a<1;
②當(dāng)p假q真時(shí),
a≤0或a≥1
a≤
1
2
或a≥
5
2
,得a≤0或a
5
2

所以a的取值范圍是(-∞,0]∪[
1
2
,1)∪[
5
2
,+∞).
點(diǎn)評(píng):本題給出含有字母參數(shù)的橢圓方程和二次函數(shù),求命題為真時(shí)參數(shù)a的取值范圍,著重考查了橢圓的標(biāo)準(zhǔn)方程和二次函數(shù)的圖象與性質(zhì)等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x
;
②命題p:“?x∈R+,sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
,
7
7-4
+
1
1-4
=2
,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號(hào)為
①③④
①③④
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給出命題p:方程數(shù)學(xué)公式=1表示焦點(diǎn)在y軸上的橢圓;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).
(1)若命題p是真命題,求a的取值范圍;
(2)如果命題“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

給出命題p:方程
x2
a
+
y2
2-a
=1表示焦點(diǎn)在y軸上的橢圓;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).
(1)若命題p是真命題,求a的取值范圍;
(2)如果命題“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省淮安市盱眙縣馬壩中學(xué)高一(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

給出命題p:方程=1表示焦點(diǎn)在y軸上的橢圓;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).
(1)若命題p是真命題,求a的取值范圍;
(2)如果命題“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案