已知雙曲線中心在原點,焦點坐標是,并且雙曲線的離心率為。
(1)求雙曲線的方程;
(2)橢圓以雙曲線的焦點為頂點,頂點為焦點,求橢圓的方程。
科目:高中數(shù)學 來源: 題型:解答題
已知焦點在軸上的雙曲線的兩條漸近線過坐標原點,且兩條漸近線與以
點 為圓心,1為半徑的圓相切,又知的一個焦點與A關于直線對稱.
(1)求雙曲線的方程;
(2)設直線與雙曲線的左支交于,兩點,另一直線經(jīng)過 及的中點,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,并且直線是拋物線的一條切線。
(1)求橢圓的方程
(2)過點的動直線交橢圓于、兩點,試問:在直角坐標平面上是否存在一個定點,使得以為直徑的圓恒過點?若存在求出的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點,直線,為平面上的動點,過作直線的垂線,垂足為點,且.
(1)求動點的軌跡的方程;
(2)過點的直線交軌跡于,兩點,交直線于點,已知,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的一個頂點為A(0,-1),焦點在x軸上,若右焦點到直線的距離為3。
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點M,N,當|AM|=|AN|時,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓 ()的一個焦點坐標為,且長軸長是短軸長的倍.
(1)求橢圓的方程;
(2)設為坐標原點,橢圓與直線相交于兩個不同的點,線段的中點為,若直線的斜率為,求△的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(14分)設橢圓的對稱中心為坐標原點,其中一個頂點為,右焦點與點
的距離為.
(1)求橢圓的方程;
(2)是否存在經(jīng)過點的直線,使直線與橢圓相交于不同的兩點滿足?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com