【題目】如圖,在直三棱柱中, , 為線段的中點.

(Ⅰ)求證:

(Ⅱ)若直線與平面所成角的正弦值為,求的長.

【答案】(1)證明見解析;(2).

【解析】試題分析:由直棱柱的性質(zhì)可得,由等腰三角形的性質(zhì)可得,由線面垂直的判定定理可得平面,進(jìn)而由面面垂直的判定定理可得結(jié)論;為原點, 軸, 軸,過點平行于的直線為軸建立空間直角坐標(biāo)系,設(shè)求出平面的一個法向量及,利用空間向量夾角余弦公式可得結(jié)果.

試題解析:(Ⅰ)∵三棱柱是直三棱柱, ∴平面 ,

平面, ∵, 的中點, ∴,

平面平面,

平面,又平面,∴

(Ⅱ)由(Ⅰ)知 平面,故以為原點, 軸, 軸,過點平行于的直線為軸建立空間直角坐標(biāo)系(如圖所示),

設(shè),則,

,· 設(shè)平面的一個法向量, 則,即,則,令可得, ,故

設(shè)直線與平面所成角為,

,

解得,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中抽取一個容量為n的樣本.如果采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個體;如果樣本容量增加一個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體,求樣本容量n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點坐標(biāo);

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點是的零點。(極值點是指函數(shù)取極值時對應(yīng)的自變量的值)

求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

證明:b>3a;

這兩個函數(shù)的所有極值之和不小于,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), , , 是5個正實數(shù)(可以相等).

證明:一定存在4個互不相同的下標(biāo), , ,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),前n和為Sn , 且Sn= (n∈N*).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=an3n , 求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點為,右頂點為,離心率為.已知是拋物線的焦點, 到拋物線的準(zhǔn)線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設(shè)上兩點, 關(guān)于軸對稱,直線與橢圓相交于點異于點),直線軸相交于點.若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線與橢圓 =1有相同的焦點,且與橢圓相交,一個交點A的縱坐標(biāo)為4,求:
(1)雙曲線的標(biāo)準(zhǔn)方程.
(2)若直線L過A(﹣1,2),且與雙曲線漸近線y=kx(k>0)垂直,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn是等差數(shù)列{an}的前n項和,公差為d,且S2015>S2016>S2014 , 下列五個命題:①d>0;②S4029>0;③S4030<0;④數(shù)列{Sn}中的最大項為S2015;⑤|a2015|>|a2016|.
其中正確結(jié)論的序號是 . (寫出所有正結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案