已知
是橢圓
的兩個焦點,
是橢圓上的點,且
.
(1)求
的周長;
(2)求點
的坐標.
解:橢圓
中,長半軸
,焦距
(1)根據(jù)橢圓定義,
所以,
的周長為
(2)設點
坐標為
由
得,
又
∴
∵
∴
,則
∴點
坐標為
或
或
或
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)求過點
且與橢圓
有相同焦點的橢圓方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的焦點重合,則該橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的上頂點為
,右焦點為
,直線
與圓
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若不過點
的動直線
與橢圓
相交于
、
兩點,且
求證:直線
過定點,并求出該定點
的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
橢圓
的離心率為
分別是左、右焦點,過F
1的直線與圓
相切,且與橢圓E交于A、B兩點。
(1)當
時,求橢圓E的方程;
(2)求弦AB中點的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知
分別是橢圓
的左、右 焦點,已知點
滿足
,且
。設
是上半橢圓上且滿足
的兩點。
(1)求此橢圓的方程;
(2)若
,求直線AB的斜率。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在圓
上任取一點
,過點
作
軸的垂線段
,
為垂足.當點
在圓上運動時,線段
的中點
形成軌跡
.
(1)求軌跡
的方程;
(2)若直線
與曲線
交于
兩點,
為曲線
上一動點,求
面積的最大值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心是坐標原點,焦點在坐標軸上,且橢圓過點
三點.
(1)求橢圓
的方程;
(2)若點
為橢圓
上不同于
的任意一點,
,求
內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)設
、
分別是橢圓
,
的左、右焦點,
是該橢圓上一個動點,且
,
。
、求橢圓
的方程;
、求出以點
為中點的弦所在的直線方程。
查看答案和解析>>