【題目】已知點A(2,8),B(x1 , y1),C(x2 , y2)在拋物線 上,△ABC的重心與此拋物線的焦點F重合(如圖)

(1)寫出該拋物線的方程和焦點F的坐標;
(2)求線段BC中點M的坐標;
(3)求BC所在直線的方程.

【答案】
(1)

【解答】由點A(2,8)在拋物線y2=2px 上,有 ,解得p=16.所以拋物線方程為y2=32x ,焦點F的坐標為(8,0).


(2)

【解答】如圖,由于F(8,0)是△ABC的重心,M是BC的中點,所以F是線段AM的定比分點,且 ,設點M的坐標為 ,則 ,解得 x0=11,y0=-4 ,

所以點M的坐標為(11,-4).


(3)

【解答】由于線段BC的中點M不在x軸上,所以BC所在的直線不垂直于x軸.設BC所在直線的方程為:

x得ky2-32y-32(11k+4)=0 ,

所以 ,由(2)的結論得 ,解得k=-4,

因此BC所在直線的方程為:4x+y-40=0 。


【解析】(1)由點A在拋物線上,將A點坐標代入,求出參數(shù)P,求解即可(2)由于F(8,0)是△ABC的重心,則重心與焦點重合,由重心坐標公式可求M是BC的中點。(3)由于線段BC的中點M不在x軸上,所以BC所在的直線不垂直于x軸.設BC所在直線的方程為: ,解出k即可。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形, 底面 , 上的一點,PE=2EC, 的中點.

(1)證明: 平面;

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù), ,且函數(shù)處的切線平行于直線

(Ⅰ)實數(shù)的值;(Ⅱ)若在)上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y= 表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③函數(shù)y=3(x﹣1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
⑤設函數(shù)f(x)是在區(qū)間[a.b]上圖象連續(xù)的函數(shù),且f(a)f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實根.
其中正確命題的序號是 . (填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x3-3ax2+3bx的圖像與直線12x+y-1=0相切于點(1,-11)。
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三棱錐P﹣ABC,點P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,M,N,K分別是正方體ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中點.

(1)求證:AN∥平面A1MK;
(2)求證:平面A1B1C⊥平面A1MK.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1 (a>b>0)的離心率為e=,過C1的左焦點F1的直線l:x-y+2=0,直線l被圓C2 (r>0)截得的弦長為2

(1)求橢圓C1的方程:

(2)設C1的右焦點為F2,在圓C2上是否存在點P,滿足|PF1|=|PF2|,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)y=sin(x+ )的圖象,只需把y=sinx圖象上所有的點(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

同步練習冊答案