【題目】已知函數(shù)().
(1)若曲線過點,求曲線在點處的切線方程;
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)有兩個不同的零點,,求證:.
【答案】(1)切線方程為(2)當時,;當時,;
當時,.(3)見解析
【解析】
試題分析:(1)由點在曲線,可解得,求導,可得切線的斜率為0,進而得到切線方程(2)求導,對分,,,四種情況分類討論,分別求出在不同情況下在區(qū)間上的最大值;(3)將所證的結論轉化為求新函數(shù)的單調區(qū)間問題得以解決.
試題解析:(1)因為點在曲線上,所以,解得,
因為,所以切線的斜率為0,
所以切線方程為.
(2)因為.
①當時,,,
所以函數(shù)在上單調遞增,則;
②當,即時,,,
所以函數(shù)在上單調遞增,則;
③當,即時,
函數(shù)在上單調遞增,在上單調遞減,
則;
④當,即時,,,
函數(shù)在上單調遞減,則.
綜上,當時,;
當時,;
當時,.
(3)不妨設,
因為,
所以,,
可得,,
要證明,即證明,也就是.
因為,
所以即證明,
即,
令,則,于是,
令(),
則,
故函數(shù)在上是增函數(shù),
所以,即成立,所以原不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】在公差不為零的等差數(shù)列中,已知,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設數(shù)列的前項和為,記,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,真命題有________.(寫出所有真命題的序號)
①若a,b,c∈R,則“ac2>bc2”是“a>b”成立的充分不必要條件;
②命題“x0∈R,x+x0+1<0”的否定是“x∈R,x2+x+1≥0”;
③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|<2,則-2<x<2”;
④函數(shù)f(x)=ln x+x-在區(qū)間(1,2)上有且僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷量價格P(元)的關系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】重慶市某廠黨支部10月份開展“兩學一做”活動,將10名黨員技工平均分為甲,乙兩組進行技能比賽.要求在單位時間內每個技工加工零件若干,其中合格零件的個數(shù)如下表:
1號 | 2號 | 3號 | 4號 | 5號 | |
甲組 | 4 | 5 | 7 | 9 | 10 |
乙組 | 5 | 6 | 7 | 8 | 9 |
(1)分別求出甲,乙兩組技工在單位時間內完成合格零件的平均數(shù)及方差,并由此分析兩組技工的技術水平;
(2)質檢部門從該車間甲,乙兩組中各隨機抽取1名技工,對其加工的零件進行檢測,若兩人完成合格零件個數(shù)之和超過12件,則稱該車間“質量合格”,求該車間“質量合格”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點和直線上的動點,線段的垂直平分線交直線于點,設點的軌跡為曲線.
(I)求曲線的方程;
(II)直線交軸于點,交曲線于不同的兩點,點關于軸的對稱點為,點關于軸的對稱點為,求證:三點共線.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com