精英家教網 > 高中數學 > 題目詳情

求-12,22,-32,42,…,(-1)n·n2,…的前50項之和S50等于


  1. A.
    1275
  2. B.
    2550
  3. C.
    2250
  4. D.
    5010
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數)都在函數y=(
1
2
)x
的圖象上,且數列{an} 是a1=1,公差為d的等差數列.
(1)證明:數列{bn} 是公比為(
1
2
)d
的等比數列;
(2)若公差d=1,以點Pn的橫、縱坐標為邊長的矩形面積為cn,求最小的實數t,若使cn≤t(t∈R,t≠0)對一切正整數n恒成立;
(3)對(2)中的數列{an},對每個正整數k,在ak與ak+1之間插入2k-1個3(如在a1與a2之間插入20個3,a2與a3之間插入21個3,a3與a4之間插入22個3,…,依此類推),得到一個新的數列{dn},設Sn是數列{dn}的前n項和,試求S1000

查看答案和解析>>

科目:高中數學 來源: 題型:

在一段時間內,某種商品的價格x(萬元)和需求量Y(t)之間的一組數據為:
價格x 1.4 1.6 1.8 2 2.2
需求量Y 12 10 7 5 3
(1)在右面的坐標系中畫出散點圖;

(2)求出Y對x的回歸直線方程 
y
=
a
+
b
x
;(其中:
b
=
n
i=1
xiyi-n 
.
x
.
y
  
n
i=1
xi2-n
.
x
2
,
a
.
y
b
.
x

參考數據1.42+1.62+1.82+22+2.22=16.6)
序號
1
2
3
4
5
求和
(3)回答下列問題:
(i)若價格定為1.9萬元,預測需求量大約是多少?(精確到0.01t)
(ii)當價格定為多少時,商品將出現滯銷?(精確到0.01萬元)
(iii)當價格定為多少時,獲得的收益最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
相交于A、B兩點.
(1)若橢圓的離心率為
3
3
,焦距為2,求線段AB的長;
(2)(文科做)若線段OA與線段OB互相垂直(其中O為坐標原點),求
1
a2
+
1
b2
的值;
(3)(理科做)若線段OA與線段OB互相垂直(其中O為坐標原點),當橢圓的離心率e∈[
1
2
,
2
2
]
時,求橢圓的長軸長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•洛陽一模)某班級舉行一次知識競賽,活動分為初賽和決賽,現將初賽成績(得分均為整數,滿分為100分)進行統計,制成如下頻率分布表.
分組(分數段) 頻數(人數) 頻率
(60,70)
8
8
0.16
(70,80) 22
0.44
0.44
(80,90) 14 0.28
(90,100)
6
6
0.12
0.12
合計 50
1
1
(1)填充頻率分布表中的空格(直接寫出對應空格序號的答案,不必寫過程);
(2)決賽規(guī)則如下:參加決賽的同學依次回答主持人的4道題,答對2道就終止答題,并獲得一等獎;如果前三道題都答錯,就不再回答第四題.某同學甲現已進入決賽(初賽80分以上,不含80分),每題答對的概率P的值恰好等于頻率分布表中80分以上的頻率值.
①求該同學答完3道題而獲得一等獎的概率;
②記該同學決賽中答題的個數為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數學 來源:學習周報 數學 北師大課標高一版(必修3) 2009-2010學年 第32期 總188期 北師大課標版 題型:013

下面的算法語句描述的是

[  ]
A.

求1+2+3+…+i的值

B.

求1+2+3+…+100的值

C.

求12+22+32+…+1002的值

D.

求12+22+32+…+i2的值

查看答案和解析>>

同步練習冊答案