已知函數(shù),其中為實(shí)數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值和最小值;
(2)若對(duì)一切的實(shí)數(shù),有恒成立,其中的導(dǎo)函數(shù),求實(shí)數(shù)的取值范圍.

(1)在區(qū)間上最小值為,最大值為;(2).

解析試題分析:(1)當(dāng)時(shí),,求出函數(shù) 的導(dǎo)函數(shù),判斷的單調(diào)性,即可求出函數(shù)最大值和最小值;
(2)由題目條件得:對(duì)任意的都成立,后按,,三種情況,對(duì)進(jìn)行分類討論去絕對(duì)值,能夠求出的取值范圍.
(1)當(dāng)時(shí),                    
,得,
,得,
,得,                  
,上單調(diào)遞增;單調(diào)遞減;
;
.
                       
在區(qū)間上最小值為,最大值為 
(2)由條件有:
①當(dāng)時(shí),
②當(dāng)時(shí),,即時(shí)恒成立
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/69/4/1jtpk3.png" style="vertical-align:middle;" />,當(dāng)時(shí)等號(hào)成立.
所以,即                     
③當(dāng)時(shí),,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).若曲線在點(diǎn)處的切線與直線垂直,
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)()
(1)當(dāng)a=2時(shí),求在區(qū)間[e,e2]上的最大值和最小值;
(2)如果函數(shù)、、在公共定義域D上,滿足<<,那么就稱、的“伴隨函數(shù)”.已知函數(shù),若在區(qū)間(1,+∞)上,函數(shù)、的“伴隨函數(shù)”,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)內(nèi)單調(diào)遞增,求的取值范圍;
(2)若函數(shù)處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量 (單位:千克)與銷售價(jià)格 (單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成品為3元/千克, 試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某風(fēng)景區(qū)在一個(gè)直徑AB為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)A與圓
弧上的一點(diǎn)C之間設(shè)計(jì)為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點(diǎn)C到點(diǎn)B設(shè)計(jì)為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計(jì))
(1)設(shè)(弧度),將綠化帶總長(zhǎng)度表示為的函數(shù)
(2)試確定的值,使得綠化帶總長(zhǎng)度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).
(1)若處的切線與直線垂直,求的值;
(2)求上的最小值;
(3)試探究能否存在區(qū)間,使得在區(qū)間上具有相同的單調(diào)性?若能存在,說明區(qū)間的特點(diǎn),并指出在區(qū)間上的單調(diào)性;若不能存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處取得極值,求的值;
(2)若函數(shù)的圖象上存在兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的,存在唯一的,使
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時(shí),有.

查看答案和解析>>

同步練習(xí)冊(cè)答案