規(guī)定,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.

(1) 求的值;

(2) 設(shè)x>0,當(dāng)x為何值時(shí),取得最小值?

(3) 組合數(shù)的兩個(gè)性質(zhì);

. 、.

是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.

 

【答案】

(1)-680(2)

(3)

【解析】

試題分析:解:(1) .

(2)  .    ∵ x > 0 ,  .

當(dāng)且僅當(dāng)時(shí),等號(hào)成立. ∴ 當(dāng)時(shí),取得最小值.

(3)性質(zhì)①不能推廣,例如當(dāng)時(shí),有定義,但無(wú)意義;

性質(zhì)②能推廣,它的推廣形式是,xÎR , m是正整數(shù).

事實(shí)上,當(dāng)m=1時(shí),有.

當(dāng)m≥2時(shí).

考點(diǎn):組合數(shù)公式和性質(zhì)

點(diǎn)評(píng):主要是考查了組合數(shù)的公式的靈活的變換和求解運(yùn)算能力,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定,其中x∈R,m是正整數(shù),且=1,這是組合數(shù) (n、m是正整數(shù),且m≤n)的一種推廣。

(I)求的值。

(II)組合數(shù)的兩個(gè)性質(zhì);①;②。是否都能推廣到 (x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由;

(III)已知組合數(shù)是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時(shí),∈Z。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定=,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.

(1)求的值.

(2)設(shè)x>0,當(dāng)x為何值時(shí),取最小值?

(3)我們知道組合數(shù)具有如下兩個(gè)性質(zhì):

=;②+=.

是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,請(qǐng)寫(xiě)出推廣的形式,并給出證明;若不能,則說(shuō)明理由.

(4)已知組合數(shù)是正整數(shù),證明當(dāng)x∈Z,m是正整數(shù)時(shí),Z.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版高中數(shù)學(xué)選修2-3 1.3二項(xiàng)式定理練習(xí)卷(解析版) 題型:解答題

(14分)規(guī)定,其中x∈R,m是正整數(shù),且,這是組合數(shù)n、m是正整數(shù),且mn)的一種推廣.

(1) 求的值;

(2) 設(shè)x>0,當(dāng)x為何值時(shí),取得最小值?

(3) 組合數(shù)的兩個(gè)性質(zhì);

. 、.

是否都能推廣到x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:解答題

規(guī)定,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n,m是正整數(shù),且m≤n)的一種推廣,
(Ⅰ)求的值;
(Ⅱ)組合數(shù)的兩個(gè)性質(zhì):①;②,
是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,請(qǐng)寫(xiě)出推廣的形式,并給出明;若不能,則說(shuō)明理由;
(Ⅲ)已知組合數(shù)是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時(shí),∈Z。

查看答案和解析>>

同步練習(xí)冊(cè)答案