甲、乙兩人獨立地破譯1個密碼, 他們能譯出密碼的概率分別為, 求:
(1)甲、乙兩人至少有一個人破譯出密碼的概率;   
(2)兩人都沒有破譯出密碼的概率.

(1)  ;(2) 。

解析試題分析:(1)設甲破譯密碼的事件為A, 乙破譯密碼的事件為B, 則    1分
     3分   
答: 至少有一個人破譯出密碼的概率為;   1分   
(2)設兩人都沒有破譯的事件為C,-    1分
     3分
答: 兩人都沒有破譯出密碼的概率為。    1分 
考點:相互獨立事件的概率;對立事件的概率公式。
點評:本題主要考查相互獨立事件的概率即對立事件的概率公式。我們做題時一定要仔細、細心,避免出現(xiàn)計算錯誤。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

袋中裝著分別標有數(shù)字1,2,3,4,5的5個形狀相同的小球.
(1)從袋中任取2個小球,求兩個小球所標數(shù)字之和為3的倍數(shù)的概率;
(2)從袋中有放回的取出2個小球,記第一次取出的小球所標數(shù)字為x,第二次為y,求點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

現(xiàn)有甲、乙兩個靶。某射手向甲靶射擊一次,命中的概率為,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為,每命中一次得2分,沒有命中得0分。該射手每次射擊的結果相互獨立。假設該射手完成以上三次射擊。
(Ⅰ)求該射手恰好命中一次的概率;
(Ⅱ)求該射手的總得分X的分布列及數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為1的正方形OABC內取一點P(x,y),求:

(1)點P到原點距離小于1的概率;
(2)以x,y,1為邊長能構成三角形的概率;
(3)以x,y,1為邊長能構成銳角三角形的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日   期
12月1日
12月2日
12月3日
12月4日
12月5日
溫差(°C)
10
11
13
12
8
發(fā)芽數(shù)(顆)
23
25
30
26
16
該農科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關于x的線性回歸方程已知回歸直線方程是:,其中,;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校高三年級組為了緩解學生的學習壓力,舉辦元宵猜燈謎活動。規(guī)定每人最多猜3道,在A區(qū)猜對一道燈謎獲3元獎品;在B區(qū)猜對一道燈謎獲2元獎品,如果前兩次猜題后所獲獎品總額超過3元即停止猜題,否則猜第三道題。假設某同學猜對A區(qū)的任意一道燈謎的概率為0.25,猜對B區(qū)的任意一道燈謎的概率為0.8,用表示該同學猜燈謎結束后所得獎品的總金額。
(1)若該同學選擇先在A區(qū)猜一題,以后都在B區(qū)猜題,求隨機變量的數(shù)學期望;
(2)試比較該同學選擇都在B區(qū)猜題所獲獎品總額超過3元與選擇(1)中方式所獲獎品總額超過3元的概率的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知甲盒內有大小相同的1個紅球和3個黑球, 乙盒內有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內各任取2個球.
(Ⅰ)求取出的4個球均為黑球的概率;
(Ⅱ)求取出的4個球中恰有1個紅球的概率;
(Ⅲ)設為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)一廠家向用戶提供的一箱產品共件,其中有件次品,用戶先對產品進行抽檢以決定是否接收.抽檢規(guī)則是這樣的:一次取一件產品檢查(取出的產品不放回箱子),若前三次沒有抽查到次品,則用戶接收這箱產品;若前三次中一抽查到次品就立即停止抽檢,并且用戶拒絕接收這箱產品.
(Ⅰ)求這箱產品被用戶接收的概率;
(Ⅱ)記抽檢的產品件數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩個盒子里各放有標號為1,2,3,4的四個大小形狀完全相同的小球,從甲盒中任取一小球,記下號碼后放入乙盒,再從乙盒中任取一小球,記下號碼.
(Ⅰ)求的概率;
(Ⅱ)設隨機變量,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案