【題目】某校高一(1)班全體男生的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖甲所示,據(jù)此解答如下問題:
(1)求該班全體男生的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的男生人數(shù),并計(jì)算頻率公布直方圖如圖乙中[80,90)之間的矩形的高.

【答案】
(1)解:由莖葉圖知,分?jǐn)?shù)在[50,60)之間的頻數(shù)為2,

由頻率分布直方圖知,

分?jǐn)?shù)在[50,60)之間的頻率為0.008×10=0.08,

所以該班全體男生人數(shù)為 (人)


(2)解:由莖葉圖可見部分共有21人,

所以[80,90)之間的男生人數(shù)為25﹣21=4(人),

所以,分?jǐn)?shù)在[80,90)之間的頻率為

頻率分布直方圖中[80,90)間的矩形的高為


【解析】(1)由莖葉圖,利用頻率、頻數(shù)與樣本容量的關(guān)系,即可求出該班全體男生人數(shù);(2)由莖葉圖,利用頻率分布直方圖,即可求出對(duì)應(yīng)矩形的高.
【考點(diǎn)精析】本題主要考查了頻率分布直方圖和莖葉圖的相關(guān)知識(shí)點(diǎn),需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng), 時(shí),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為△ABC內(nèi)一點(diǎn),且 , ,若B,O,D三點(diǎn)共線,則t的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次“環(huán)保只知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為 分)作為樣本進(jìn)行統(tǒng)計(jì).請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.

(1)求出的值;

(2)在選取的樣本中,從競(jìng)賽成績(jī)是 分以上(含 分)的同學(xué)中隨機(jī)抽取 名同學(xué)到廣場(chǎng)參加環(huán)保只是的志愿宣傳活動(dòng).

1)求所抽取的 名同學(xué)中至少有 名同學(xué)來自第 組的概率;

2)求所抽取的 名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估計(jì)眾數(shù)與中位數(shù)分別是(
A.12.5 12.5
B.12.5 13
C.13 12.5
D.13 13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x+c有兩個(gè)不同零點(diǎn),且有一個(gè)零點(diǎn)恰為f(x)的極大值點(diǎn),則c的值為(
A.0
B.2
C.﹣2
D.﹣2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調(diào)遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),令h(x)=f(x)g(x),且對(duì)任意x1 , x2∈(0,+∞),都有 <0,g(1)=0,則不等式xh(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi), ,| |=| |=2, = + ,若| |<1,則| |的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案