直三棱柱ABC-A1B1 C1的六個(gè)頂點(diǎn)都在球O的球面上.若AB=BC=1,∠ABC=120°,AA1=2
3
,則球O的表面積為( 。
分析:通過(guò)已知體積求出底面外接圓的半徑,設(shè)此圓圓心為O',球心為O,在RT△OBO'中,求出球的半徑,然后求出球的表面積即可.
解答:解:在△ABC中AB=BC=1,∠ABC=120°,
由余弦定理可得AC=
3
,
由正弦定理,可得△ABC外接圓半徑r=1,
設(shè)此圓圓心為O',球心為O,在RT△OAO'中,
得球半徑R=
12+(
3
)
2
=2,
故此球的表面積為4πR2=16π
故選B.
點(diǎn)評(píng):本題是基礎(chǔ)題,解題思路是:先求底面外接圓的半徑,轉(zhuǎn)化為直角三角形,求出球的半徑,這是三棱柱外接球的常用方法;本題考查空間想象能力,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求證:平面AB1C⊥平面B1CB;    
(2)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直線(xiàn)B1C與平面ABC成30°角.
(1)求證:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距離;   
(3)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶八中高三(下)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案