已知正項(xiàng)等差數(shù)列的前n項(xiàng)和為,若,且,,成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.
(1);(2).
解析試題分析:(1)由等差數(shù)列的性質(zhì)可知,,再由,,成等比數(shù)列,可得到關(guān)于公差的方程:,再由是正項(xiàng)等差數(shù)列可知,從而可得通項(xiàng)公式;(2)由(1)及可知數(shù)列的通項(xiàng)公式為等差數(shù)列與等比數(shù)列的乘積,因此可以考慮采用錯(cuò)位相減法來求其前項(xiàng)和:①,
①:②,
①-②可得:
,即.
試題解析:(1)∵等差數(shù)列,,∴,,
又∵,,成等比數(shù)列,∴或,
又∵正項(xiàng)等差數(shù)列,∴,∴;
(2)∵,∴,
∴①,
①:②,
①-②可得:
,
∴.
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2.錯(cuò)位相減法求數(shù)列的和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和,
(1)寫出數(shù)列的前5項(xiàng);
(2)數(shù)列是等差數(shù)列嗎?說明理由.
(3)寫出的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的通項(xiàng)公式為,其中是常數(shù),且.
(1)數(shù)列是否一定是等差數(shù)列?如果是,其首項(xiàng)與公差是什么?并證明,如果不是說明理由.
(2)設(shè)數(shù)列的前項(xiàng)和為,且,,試確定的公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為0的等差數(shù)列滿足,,,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和;(Ⅲ)設(shè),若數(shù)列是單調(diào)遞減數(shù)列,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列為等差數(shù)列,且,數(shù)列的前項(xiàng)和為,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的公差為,點(diǎn)在函數(shù)的圖象上().
(1)若,點(diǎn)在函數(shù)的圖象上,求數(shù)列的前項(xiàng)和;
(2)若,學(xué)科網(wǎng)函數(shù)的圖象在點(diǎn)處的切線在軸上的截距為,求數(shù)列的前 項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•湖北)成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com