(1)求函數(shù)h(x)=x2-g(x)的極小值;
(2)設(shè)函數(shù)f(x)的圖象為C1,g(x)的圖象為C2,過點(diǎn)P,Q的直線為l,當(dāng)直線l為曲線C1和曲線C2的公切線時(shí),求x1與x2滿足的關(guān)系式及x1的取值范圍.
解:(1)∵f(x)=Ex,即y=Exx=lny,?
∴f(x)的反函數(shù)g(x)=lnx,h(x)=x2-lnx(x>0). ?
∵h′(x)=2x-,令h′(x)=0,解得x=±,?
又∵x>0,∴x=.?
當(dāng)0<x<時(shí),h′(x)<0,∴h(x)在區(qū)間(0,)內(nèi)為減函數(shù);?
當(dāng)x>時(shí),h′(x)>0,∴h(x)在區(qū)間(,+∞)內(nèi)為增函數(shù); ?
故當(dāng)x=時(shí),函數(shù)h(x)取得極小值,且極小值為?
h()=()2-ln=-ln. ?
(2)∵f′(x)=Ex,g′(x)=,又P(x1,Ex1),Q(x2,lnx2),
∴當(dāng)直線l為曲線C1與曲線C2的公切線時(shí),它的方程為y-Ex1=Ex1 (x-x1) ①?
或y-lnx2=(x-x2), ②?
由①得,y=Ex1·x+Ex1(1-x1),由②得,y=·x+lnx2-1,
∴= Ex1x2= E-x1,即x2=E-x1. ?
∴Ex1 (1-x1)=lnx2-1=lnE-x1-1Ex1(1-x1)=-x1-1Ex1=.?
又∵Ex1>0,∴>0x1<-1或x1>1.?
當(dāng)x1>1時(shí), Ex1>E,解>E,可得x1<,即1<x1<,?
當(dāng)x1<-1時(shí), Ex1<,解<,可得x1>,?
即<x1<-1,?
故x1∈(,-1)∪(1,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
k | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ex+x-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ex+x-a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com