【題目】暑假期間小輝計劃在8月11日至8月20日期間調(diào)研某商業(yè)中心周邊停車場停車狀況,根據(jù)停車場統(tǒng)計數(shù)據(jù),該停車場在此期間“停車難易度”(即停車數(shù)量與核定的最大瞬時容量之比,40%以下為較易,40%~60%為一般,60%以上為較難),情況如圖所示,小輝隨機選擇8月11日至8月19日中的某一天達到該商業(yè)中心,并連續(xù)調(diào)研2天.

(Ⅰ)求小輝連續(xù)兩天都遇上停車場較難的概率;

(Ⅱ)設是小輝調(diào)研期間遇上停車較易的天數(shù),求的分布列和數(shù)學期望;

(Ⅲ)由圖判斷從哪天開始連續(xù)三天停車難易度的方差最大?(結(jié)論不要求證明)

【答案】(1)(2)見解析(3)從8月16日開始連續(xù)三天難易度的方差最大.

【解析】試題分析:

(1)設出基本事件可得“小輝連續(xù)兩天都遇上較難”.則 .

(2) 由題意,可知的所有可能取值為0,1,2.計算概率得出分布列,計算數(shù)學期望可得.

(3) 由圖判斷從8月16日開始連續(xù)三天難易度的方差最大.

試題解析:

解:設表示事件“小輝8月11日起第日連續(xù)兩天調(diào)研”( ,2,…9),根據(jù)題意, ,且).

(1)設為事件“小輝連續(xù)兩天都遇上較難”.則,所以

.

(2)由題意,可知的所有可能取值為0,1,2.且

;

,所以的分布列為

的期望 .

(3)從8月16日開始連續(xù)三天難易度的方差最大.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】20名同學參加某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:

)求頻率分布直方圖中的值;

)分別求出成績落在中的學生人數(shù);

)從成績在的學生中任選2人,求此2人的成績都在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中, , .數(shù)列的前n項和為,滿足,

(1)求數(shù)列的通項公式;

(2)數(shù)列能否為等差數(shù)列?若能,求其通項公式;若不能,試說明理由;

(3)若數(shù)列是各項均為正整數(shù)的遞增數(shù)列,設,則當 , , , 均成等差數(shù)列時,求正整數(shù), , 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為 ,且過點D(2,0).
(1)求該橢圓的標準方程;
(2)設點 ,若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P﹣ABCD及其三視圖如下圖所示,E是側(cè)棱PC上的動點.
(Ⅰ)求四棱錐P﹣ABCD的體積;
(Ⅱ)不論點E在何位置,是否都有BD⊥AE?試證明你的結(jié)論;
(Ⅲ)若點E為PC的中點,求二面角D﹣AE﹣B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某住宅小區(qū)的平面圖呈圓心角為120°的扇形AOB,小區(qū)的兩個出入口設置在點A及點C處,且小區(qū)里有一條平行于BO的小路CD,已知某人從C沿CD走到D用了10分鐘,從D沿DA走到A用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑OA的長(精確到1米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓F1:(x+1)2+y2=16,定點F2(1,0),A是圓F1上的一動點,線段F2A的垂直平分線交半徑F1AP點.

(1)求P點的軌跡C的方程;

(2)四邊形EFGH的四個頂點都在曲線C上,且對角線EG,FH過原點O,

kEGkFH=-,求證:四邊形EFGH的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) 的定義域是(
A..
B..
C..
D..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近代統(tǒng)計學的發(fā)展起源于二十世紀初,它是在概率論的基礎(chǔ)上發(fā)展起來的,統(tǒng)計性質(zhì)的工作可以追溯到遠古的“結(jié)繩記事”和《二十四史》中大量的關(guān)于我人口、錢糧、 水文、天文、地震等資料的記錄.近幾年,霧霾來襲,對某市該年11月份的天氣情況進行統(tǒng)計,結(jié)果如下:表一

日期

天氣

日期

天氣

由于此種情況某市政府為減少霧霾于次年采取了全年限行的政策.

下表是一個調(diào)査機構(gòu)對比以上兩年11月份(該年不限行 天、次年限行天共 天)的調(diào)查結(jié)果:

表二

不限行

限行

總計

沒有霧霾

有霧霾

總計

(1)請由表一數(shù)據(jù)求 ,并求在該年11月份任取一天,估計該市是晴天的概率;

(2)請用統(tǒng)計學原理計算若沒有 的把握認為霧霾與限行有關(guān)系,則限行時有多少天沒有霧霾?

(由于不能使用計算器,所以表中數(shù)據(jù)使用時四舍五入取整數(shù))

查看答案和解析>>

同步練習冊答案