數(shù)列中,,用數(shù)學歸納法證明:。
對于關(guān)于自然數(shù)的的命題可知通過數(shù)學歸納法來加以證明。分為兩個步驟,第一步,證明n取第一個值成立,假設(shè)n=k成立來推理得到n=k+1成立。

試題分析:
解:(1) 當n=1時, ,不等式成立.
(2)假設(shè)當n=k時不等式成立,即
,
當n=k+1時, 不等式也成立
綜合(1)(2),不等式對所有正整數(shù)都成立
點評:主要是考查了數(shù)學歸納法來證明不等式的運用,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

一個首項為23,公差為整數(shù)的等差數(shù)列,如果前6項均為正數(shù),第7項起為負數(shù),則它的公差為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將全體正整數(shù)排成一個三角形數(shù)陣:
 
按照以上排列的規(guī)律,第n行(n≥2)從左向右的第2個數(shù)為              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列是等差數(shù)列,,數(shù)列的前n項和是,且.
(I)求數(shù)列的通項公式;
(II)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}中,a2=1,前n項和為Sn,且
(1)求a1,a3
(2)求證:數(shù)列{an}為等差數(shù)列,并寫出其通項公式;
(3)設(shè),試問是否存在正整數(shù)p,q(其中1<p<q),使b1,bp,bq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

楊輝是中國南宋末年的一位杰出的數(shù)學家、數(shù)學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律。下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14個數(shù)與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35。顯然,1+3+6+10+15=35。事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù)。試用含有m、k的數(shù)學公式表示上述結(jié)論,并給予證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在等差數(shù)列中,有,則此數(shù)列的前13項之和為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列的前三項依次為,,,則此數(shù)列的通項公式為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列項和,,則公差d的值為  (   )
A.2B.3C.4D.-3

查看答案和解析>>

同步練習冊答案