下列四個命題中:
①設(shè)經(jīng)x,y∈R,則“x≥2且y≥2”是“x2+y2≥4”的必要不充分條件;
②命題“所有能被2整除的整數(shù)都是偶數(shù)”的否定是:“存在一個能被2整除的整數(shù)不是偶數(shù)”;
③已知命題“如果|a|≤1,那么關(guān)于x的不等式(a2-4)x2+(a+2)x-1≥0的解集為∅”,它的逆命題是假命題;
④“m=1”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充要條件;
則所有正確命題的序號有 .
【答案】分析:①利用充分條件和必要條件的定義判斷.②利用全稱命題的否定是特稱命題進行判斷.③利用四種命題真假之間的關(guān)系判斷.④利用充要條件的定義判斷.
解答:解:①若x≥2且y≥2,則x2+y2≥4成立.當(dāng)x=0,y=3時,滿足x2+y2≥4,但x≥2不成立,所以“x≥2且y≥2”是“x2+y2≥4”的充分不必要條件,所以①錯誤.
②全稱命題的否定是特稱命題,所以命題“所有能被2整除的整數(shù)都是偶數(shù)”的否定是:“存在一個能被2整除的整數(shù)不是偶數(shù)”,所以②正確.
③原命題的逆命題為“若關(guān)于x的不等式(a2-4)x2+(a+2)x-1≥0的解集為∅,則|a|≤1”,當(dāng)a=-2時,不等式等價為-1≥0,此時解集為空集,
所以a=-2成立,所以逆命題為假命題,所以③正確.
④若(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直,則(m+2)(m-2)+m(m+2)=0,即(m+2)(m-1)=0,解得m=1或m=-2.
所以“m=1”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充分不必要條件,所以④錯誤.
故答案為:②③.
點評:本題主要考查充分條件和必要條件的應(yīng)用,四種命題之間的關(guān)系,以及含有量詞的命題的否定,綜合性較強.