【題目】(1)求函數(shù)取得最大值時(shí)的自變量的集合并說(shuō)出最大值;

(2)求函數(shù)的單調(diào)遞增區(qū)間.

【答案】(1)3;(2).

【解析】

(1)根據(jù)余弦函數(shù)的值域可求出函數(shù)的最大值,可求得 取得最大值時(shí)自變量的集合;(2),求得的范圍可得函數(shù)的增區(qū)間,再結(jié)合,進(jìn)一步確定函數(shù)的增區(qū)間.

(1)由2x = + 2k, 得x =+ k, k Z.

所以, 函數(shù)y = - 3cos2x, x R取得最大值時(shí)的自變量x的集合是{x | x + k, k Z}.

函數(shù)y = - 3cos2x, x R的得最大值是3.

(2)由-+ 2k 2x ++ 2k, 得-+ k x + k, k Z.

設(shè)A = [0, ], B = {x |-+ k x + k, k Z}, 易知A∩B = [0,]∪[, ]. 所以, 函數(shù)y = 3sin(2x +), x [0, ]的單調(diào)遞增區(qū)間為[0,]和[, ].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足a1=﹣1,|an﹣an1|=2n1(n∈N,n≥2),且{a2n1}是遞減數(shù)列,{a2n}是遞增數(shù)列,則a2016=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由形狀為長(zhǎng)方形A1B1C1D1的休閑區(qū)和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10(如圖所示)

(1)若設(shè)休閑區(qū)的長(zhǎng)和寬的比x(x>1),求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;

(2)要使公園所占面積最小,則休閑區(qū)A1B1C1D1的長(zhǎng)和寬該如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)判斷函數(shù)的奇偶性;

(2)是否存在實(shí)數(shù)使得的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖放置的邊長(zhǎng)為2的正三角形沿軸滾動(dòng), 設(shè)頂點(diǎn)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是, 有下列結(jié)論:

①函數(shù)的值域是;②對(duì)任意的,都有;

③函數(shù)是偶函數(shù);④函數(shù)單調(diào)遞增區(qū)間為.

其中正確結(jié)論的序號(hào)是________. (寫(xiě)出所有正確結(jié)論的序號(hào))

說(shuō)明:

“正三角形沿軸滾動(dòng)”包括沿軸正方向和沿軸負(fù)方向滾動(dòng). 沿軸正方向滾動(dòng)指的是先以頂點(diǎn)為中心順時(shí)針旋轉(zhuǎn), 當(dāng)頂點(diǎn)落在軸上時(shí), 再以頂點(diǎn)為中心順時(shí)針旋轉(zhuǎn), 如此繼續(xù). 類(lèi)似地, 正三角形可以沿軸負(fù)方向滾動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的方程為x2+y2=10.
(1)求直線:x=1被⊙O截的弦AB的長(zhǎng);
(2)求過(guò)點(diǎn)(﹣3,1)且與⊙O相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

Ⅰ)若函數(shù)處的切線方程為,求的值;

Ⅱ)當(dāng)時(shí),若不等式恒成立,求的取值范圍;

Ⅲ)當(dāng)時(shí),若方程上總有兩個(gè)不等的實(shí)根, 的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有120名教師,且年齡都在20歲到60歲之間,各年齡段人數(shù)按分組,其頻率分布直方圖如圖所示,學(xué)校要求每名教師都要參加兩項(xiàng)培訓(xùn),培訓(xùn)結(jié)束后進(jìn)行結(jié)業(yè)考試.已知各年齡段兩項(xiàng)培訓(xùn)結(jié)業(yè)考試成績(jī)優(yōu)秀的人數(shù)如表示,假設(shè)兩項(xiàng)培訓(xùn)是相互獨(dú)立的,結(jié)業(yè)考試成績(jī)也互不影響.

年齡分組

A項(xiàng)培訓(xùn)成績(jī)優(yōu)秀人數(shù)

B項(xiàng)培訓(xùn)成績(jī)優(yōu)秀人數(shù)

[20,30)

30

18

[30,40)

36

24

[40,50)

12

9

[50,60]

4

3


(1)若用分層抽樣法從全校教師中抽取一個(gè)容量為40的樣本,求從年齡段[20,30)抽取的人數(shù);
(2)求全校教師的平均年齡;
(3)隨機(jī)從年齡段[20,30)和[30,40)內(nèi)各抽取1人,設(shè)這兩人中兩項(xiàng)培訓(xùn)結(jié)業(yè)考試成績(jī)都優(yōu)秀的人數(shù)為X,求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形內(nèi)的圖形來(lái)自中國(guó)古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分位于正方形的中心成中心對(duì)稱(chēng),在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自黑色部分的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案