(12分)如圖,已知拋物線C:,為其準(zhǔn)線,過其對稱軸上一點P 作直線與拋物線交于A、B兩點,連結(jié)OA、OB并延長AO、BO分別交于點M、N。(1)求的值;

(2)記點Q是點P關(guān)于原點的對稱點,

設(shè)P分有向線段所成的比為,

求證: 

(1)-1


解析:

(1)證明:設(shè) 

 

 則 

     

     

                          

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點. A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標(biāo)原點).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C:x2=2py(p>0)與圓O:x2+y2=8相交于A、B兩點,且
OA
OB
=0
(O為坐標(biāo)原點),直線l與圓O相切,切點在劣弧AB(含A、B兩點)上,且與拋物線C相交于M、N兩點,d是M、N兩點到拋物線C的焦點的距離之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)如圖,已知拋物線C:y2=4x,過點A(1,2)作拋物線C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,證明直線PQ過定點,并求出定點的坐標(biāo);
(Ⅱ)假設(shè)直線PQ過點T(5,-2),請問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個數(shù)?如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)如圖,已知拋物線C:y2=4x的焦點為F,過F的直線l與拋物線C交于A(x1,y1)(y1>0),B(x2,y2)兩點,T為拋物線的準(zhǔn)線與x軸的交點.
(1)若
TA
TB
=1
,求直線l的斜率;
(2)求∠ATF的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=4x焦點為F,直線l經(jīng)過點F且與拋物線C相交于A、B兩點.
(Ⅰ)若線段AB的中點在直線y=2上,求直線l的方程;
(Ⅱ)若|AB|=20,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案