七個(gè)數(shù)排成一排,奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,且奇數(shù)項(xiàng)的和與偶數(shù)項(xiàng)的積之差為42,首尾兩項(xiàng)與中間項(xiàng)的和為27,求中間項(xiàng).

思路解析:這是等差數(shù)列與等比數(shù)列的綜合應(yīng)用題,解決問(wèn)題的關(guān)鍵是如何巧妙地設(shè)出數(shù)列中各數(shù).

解:設(shè)這七個(gè)數(shù)依次是a-3d,,a-d,b,a+d,bq,a+3d.

由題意,得(a-3d)+(a-d)+(a+d)+(a+3d)-(·b·bq)=42,

即4a-b3=42,                                                                ①

且(a-3d)+(a+3d)+b=27,

即2a+b=27.                                                                  ②

由①②消去a,得(b-2)(b2+2b+4)=0.

∵b2+2b+4>0,∴b=2.

因此,中間項(xiàng)為2.

方法歸納

當(dāng)已知三個(gè)數(shù)成等差數(shù)列,且知三數(shù)之和時(shí),要把這三個(gè)數(shù)設(shè)為a-d,a,a+d;當(dāng)已知三個(gè)數(shù)成等比數(shù)列,且知三個(gè)數(shù)之積時(shí),常將這三個(gè)數(shù)設(shè)為,a,aq.

    當(dāng)已知四個(gè)數(shù)成等差數(shù)列且知四數(shù)之和時(shí),可將這四個(gè)數(shù)設(shè)為a-3d,a-d,a+d,a+3d;當(dāng)已知四個(gè)數(shù)成等比數(shù)列,且知四個(gè)數(shù)之積時(shí),可將這四個(gè)數(shù)設(shè)為,,aq,aq3,這樣能簡(jiǎn)化運(yùn)算.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案