【題目】在中,角、、所對(duì)的邊分別為、、.已知.
(1)求;
(2)若的面積為,周長為 ,求.
【答案】(1);(2)7.
【解析】
試題分析:(1)首先利用正弦定理化已知條件等式中的邊為角,然后利用兩角和的正弦公式結(jié)合三角形內(nèi)角和定理求得的值,從而求得角的大。(2)首先結(jié)合(1)利用三角形面積公式求得的關(guān)系式,然后根據(jù)余弦定理求得的值.
試題解析:(1)由正弦定理可得
sinA=2sinAcosAcosB-2sinBsin2A …2分
=2sinA(cosAcosB-sinBsinA)=2sinAcos(A+B)=-2sinAcosC.
所以cosC=-,故C=. …6分
(2)由△ABC的面積為得ab=15, …8分
由余弦定理得a2+b2+ab=c2,又c=15-(a+b),
解得c=7. …12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)記的極小值為,求的最大值;
(Ⅱ)若對(duì)任意實(shí)數(shù)恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶市某廠黨支部10月份開展“兩學(xué)一做”活動(dòng),將10名黨員技工平均分為甲,乙兩組進(jìn)行技能比賽.要求在單位時(shí)間內(nèi)每個(gè)技工加工零件若干,其中合格零件的個(gè)數(shù)如下表:
1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | |
甲組 | 4 | 5 | 7 | 9 | 10 |
乙組 | 5 | 6 | 7 | 8 | 9 |
(1)分別求出甲,乙兩組技工在單位時(shí)間內(nèi)完成合格零件的平均數(shù)及方差,并由此分析兩組技工的技術(shù)水平;
(2)質(zhì)檢部門從該車間甲,乙兩組中各隨機(jī)抽取1名技工,對(duì)其加工的零件進(jìn)行檢測,若兩人完成合格零件個(gè)數(shù)之和超過12件,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,若X是的子集,把X中所有元素的和稱為X的“容量”(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為的奇(偶)子集.
(1)寫出S4的所有奇子集;
(2)求證:的奇子集與偶子集個(gè)數(shù)相等;
(3)求證:當(dāng)n≥3時(shí),的所有奇子集的容量之和等于所有偶子集的容量之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線的極坐標(biāo)方程為.
(I)當(dāng)時(shí),判斷直線與的關(guān)系;
(II)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)和直線上的動(dòng)點(diǎn),線段的垂直平分線交直線于點(diǎn),設(shè)點(diǎn)的軌跡為曲線.
(I)求曲線的方程;
(II)直線交軸于點(diǎn),交曲線于不同的兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求證:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為等差數(shù)列, ,公差,且其中的三項(xiàng)成等比.
(1)求數(shù)列的通項(xiàng)公式以及它的前n項(xiàng)和;
(2)若數(shù)列滿足,為數(shù)列的前項(xiàng)和,求;
(3)在(2)的條件下,若不等式()恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知M(x0,y0)是橢圓C:+=1上的任一點(diǎn),從原點(diǎn)O向圓M:(x-x0)2+(y-y0)2=2作兩條切線,分別交橢圓于點(diǎn)P,Q.
(1)若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1k2為定值;
(2)試問|OP|2+|OQ|2是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com