【題目】已知f(x)=
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對(duì)任意x>0,f(x)≤t恒成立,求實(shí)數(shù)t的取值范圍.

【答案】
(1)解:∵f(x)>k,

>k;

整理得kx2﹣2x+6k<0,∵不等式的解集為{x|x<﹣3或x>﹣2},

∴方程kx2﹣2x+6k=0的兩根是﹣3,﹣2;

由根與系數(shù)的關(guān)系知,

﹣3+(﹣2)= ,

即k=﹣


(2)解:∵x>0,

∴f(x)= = = ,

當(dāng)且僅當(dāng)x= 時(shí)取等號(hào);

又∵f(x)≤t對(duì)任意x>0恒成立,

∴t≥ ,

即t的取值范圍是[ ,+∞)


【解析】(1)根據(jù)題意,把f(x)>k化為kx2﹣2x+6k<0,由不等式與對(duì)應(yīng)方程的關(guān)系,利用根與系數(shù)的關(guān)系求出k的值;(2)化簡(jiǎn)f(x),利用基本不等式,求出f(x)≤t時(shí)t的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為18,焦距為6,則橢圓的方程為( )
A.
B.
C.
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面, ,點(diǎn)在線段上,且 ,點(diǎn)在線段上,且.

(1)證明: 平面

(2)若四棱錐的體積為7,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了制定合理的節(jié)電方案,對(duì)居民用電情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年200戶居民每戶的月均用電量(單位:百千瓦時(shí)),將數(shù)據(jù)按 分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有100萬(wàn)戶居民,估計(jì)全市每戶居民中月均用電量不低于6百千瓦時(shí)的人數(shù)及每戶居民月均用電量的中位數(shù);

(3)政府計(jì)劃對(duì)月均用電量在4百千瓦時(shí)以下的用戶進(jìn)行獎(jiǎng)勵(lì),月均用電量在內(nèi)的用戶獎(jiǎng)勵(lì)20元/月,月均用電量在內(nèi)的用戶獎(jiǎng)勵(lì)10元/月,月均用電量在內(nèi)的用戶獎(jiǎng)勵(lì)2元/月.若該市共有400萬(wàn)戶居民,試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出如下幾個(gè)結(jié)論:①命題“x∈R,sinx+cosx=2”的否定是“x∈R,sinx+cosx≠2”;②命題“x∈R,sinx+ ≥2”的否定是“x∈R,sinx+ <2”;③對(duì)于x∈(0, ),tanx+ ≥2;
x∈R,使sinx+cosx= .其中正確的為(
A.③
B.③④
C.②③④
D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y= 的定義域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫(xiě)出曲線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)的圖象恰好相切與點(diǎn),求實(shí)數(shù) 的值;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

(3)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小值及此時(shí)的x的集合.
(2)函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案