【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實數(shù)a的取值范圍.
【答案】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x<a+1},
由A∩B=,A∪B=R,得 ,得a=2,
所以滿足A∩B=,A∪B=R的實數(shù)a的值為2;
(Ⅱ)因p是q的充分條件,所以AB,且A≠,所以結合數(shù)軸可知,
a+1≤1或a﹣1≥3,解得a≤0,或a≥4,
所以p是q的充分條件的實數(shù)a的取值范圍是(﹣∞,0]∪[4,+∞)
【解析】(Ⅰ)把集合B化簡后,由A∩B=,A∪B=R,借助于數(shù)軸列方程組可解a的值;(Ⅱ)把p是q的充分條件轉化為集合A和集合B之間的關系,運用兩集合端點值之間的關系列不等式組求解a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產(chǎn)這兩種棉紗的計劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應各生產(chǎn)多少噸,能使利潤總額最大?并求出利潤總額的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的長軸長為6,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.
(1)求證:平面PAC⊥平面PCD;
(2)若E是PD的中點,求平面BCE將四棱錐P﹣ABCD分成的上下兩部分體積V1、V2之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐ABC﹣A1B1C1中,底面ABC是邊長為2的正三角形,側棱AA1⊥底面ABC,AA1= ,P、Q分別是AB、AC上的點,且PQ∥BC.
(1)若平面A1PQ與平面A1B1C1相交于直線l,求證:l∥B1C1;
(2)當平面A1PQ⊥平面PQC1B1時,確定點P的位置并說明理由.S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在公務員招聘中,既有筆試又有面試,某單位在2015年公務員考試中隨機抽取100名考生的筆試成績,按成績分為5組[50,60),[60,70),[70,80),[80,90),[90,100],得到的頻率分布直方圖如圖所示.
(1)求a值及這100名考生的平均成績;
(2)若該單位決定在成績較高的第三、四、五組中按分層抽樣抽取6名考生進入第二輪面試,現(xiàn)從這6名考生中抽取3名考生接受單位領導面試,設第四組中恰有1名考生接受領導面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側面底面,,, 分別為的中點,點在線段上.
(Ⅰ)求證:平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com