如圖,已知定點(diǎn)A(1,0),定圓C:(x+1)2+y2=8,M為圓C上的一個(gè)動(dòng)點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
AM
=2
AP
NP
AM
=0
,則點(diǎn)N的軌跡方程是______.
C(-1,0),∵
AM
=2
AP
,∴P 為AM的中點(diǎn).∵
NP
AM
=0
,∴NP⊥AM.
故 NP為線段AM的中垂線,∴NM=NA.∵NM+NC=2
2
(半徑),∴NA+NC=2
2
>AC=2,
根據(jù)橢圓的定義可得,點(diǎn)N的軌跡是以A、C為焦點(diǎn)的橢圓,a=
2
,c=1,∴b=1.
則點(diǎn)N的軌跡方程是
x2
2
+y2=1

故答案為:
x2
2
+y2=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左,右兩個(gè)頂點(diǎn)分別為、.曲線是以、兩點(diǎn)為頂點(diǎn),離心率為的雙曲線.設(shè)點(diǎn)在第一象限且在曲線上,直線與橢圓相交于另一點(diǎn)
(1)求曲線的方程;
(2)設(shè)、兩點(diǎn)的橫坐標(biāo)分別為,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系內(nèi),動(dòng)點(diǎn)P到x軸、y軸的距離之積等于1,則點(diǎn)P的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M在AB上,且AM=
1
3
,點(diǎn)P是平面ABCD上的動(dòng)點(diǎn),且動(dòng)點(diǎn)P到直線A1D1的距離與動(dòng)點(diǎn)P到點(diǎn)M的距離的平方差為1,則動(dòng)點(diǎn)的軌跡是( 。
A.圓B.拋物線C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

動(dòng)圓C與定圓C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都外切,求動(dòng)圓圓心C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

與y軸相切且和半圓x2+y2=4(0≤x≤2)內(nèi)切的動(dòng)圓圓心的軌跡方程是( 。
A.y2=4(x+1)(0<x≤1)B.y2=4(x-1)(0<x≤1)
C.y2=-4(x-1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)直線y=ax+b與雙曲線3x2-y2=1交于A、B,且以AB為直徑的圓過(guò)原點(diǎn),求點(diǎn)P(a,b)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,異于點(diǎn)A的兩動(dòng)點(diǎn)B、C分別在l1、l2上,且BC=3,則過(guò)A、B、C三點(diǎn)的動(dòng)圓所形成的圖形面積為(  )
A.6πB.9πC.
2
D.
9
4
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)A為圓(x-1)2+y2=1上的動(dòng)點(diǎn),PA是圓的切線且|PA|=1,則P點(diǎn)的軌跡方程( 。
A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2xD.y2=-2x

查看答案和解析>>

同步練習(xí)冊(cè)答案