【題目】已知偶函數(shù),當時,,當時,.關于偶函數(shù)的圖象和直線個命題如下:

時,存在直線與圖象恰有個公共點;

若對于,直線與圖象的公共點不超過個,則;

,,使得直線與圖象交于個點,且相鄰點之間的距離相等.

其中正確命題的序號是( ).

A. ①②B. ①③C. ②③D. ①②③

【答案】D

【解析】

根據(jù)偶函數(shù)的圖象關于軸對稱,利用已知中的條件作出偶函數(shù),

的圖象,利用圖象得出:

①當時,偶函數(shù)的圖象如下:

存在直線,如,與圖象恰有個公共點,故①正確.

②若對于,由于偶函數(shù)的圖象如下:

直線與圖象的公共點不超過個,則,故②正確.

,偶函數(shù)的圖象如下:

,使得直線與圖象交于個點,且相鄰點之間的距離相等,故③正確;

因此正確命題的序號是①②③.故選

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,已知橢圓),,,是橢圓上的四個動點,且,,線段交于橢圓內一點.當點的坐標為,且,分別為橢圓的上頂點和右頂點重合時,四邊形的面積為4.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)證明:當點,,,在橢圓上運動時,)是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面,,,.

(1)證明;

(2)求異面直線所成角的余弦值;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】蝴蝶定理因其美妙的構圖,像是一只翩翩起舞的蝴蝶,一代代數(shù)學名家蜂擁而證,正所謂花若芬芳蜂蝶自來.如圖,已知圓的方程為,直線與圓交于,,直線與圓交于,.原點在圓.

1)求證:.

2)設軸于點,軸于點.求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前n項和為, , ,數(shù)列滿足: , ,數(shù)列的前n項和為

(1)求數(shù)列的通項公式及前n項和;

(2)求數(shù)列的通項公式及前n項和;

(3)記集合,若M的子集個數(shù)為16,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,,,平面平面,四邊形是菱形,

1)求證:;

2)求多面體被平面分成兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的個數(shù)是( )

(1)垂直于同一條直線的兩條直線互相平行

(2)與同一個平面夾角相等的兩條直線互相平行

(3)平行于同一個平面的兩條直線互相平行

(4)兩條直線能確定一個平面

(5)垂直于同一個平面的兩個平面平行

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,已知函數(shù)與函數(shù)有交點,且交點橫坐標之和不大于,求的取值范圍_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調查了年下半年該市名農(nóng)民工(其中技術工、非技術工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設這名農(nóng)民工的月工資均在(百元)內)且月工資收入在(百元)內的人數(shù)為,并根據(jù)調查結果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術工有名,非技術工有名,則能否在犯錯誤的概率不超過的前提下認為是不是技術工與月工資是否高于平均數(shù)有關系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

同步練習冊答案