(本小題滿分12分)
已知是公差為正數(shù)的等差數(shù)列,首項(xiàng),前n項(xiàng)和為Sn,數(shù)列是等比數(shù)列,首項(xiàng)
(1)求的通項(xiàng)公式.
(2)令的前n項(xiàng)和Tn.
解:(1)設(shè)公差為,公比為,依題意可得:
                                       ………………2分
解得:(舍去)              ………………4分
                                   ………………6分
(2)                                        ………………7分
                   
                   ………………9分
兩式作差可得:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知單調(diào)遞增的等比數(shù)列滿足:,且 是的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式
(2)令,,求使成立的小的正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知數(shù)列中,對(duì)任意都有:
(1)若數(shù)列是等差數(shù)列,數(shù)列是否為等比數(shù)列?若是,請(qǐng)求出通項(xiàng)公式,若不是,請(qǐng)說明理由;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列是等差數(shù)列, ,Sn是數(shù)列的前n項(xiàng)和,則(   )
A.S4<S5 B.S4=S5C.S6<S5 D.S6=S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列中,,記,則的值為(  )
A.260B.168C.156D.130

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題14分)等差數(shù)列的前項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;
(2)設(shè),中的部分項(xiàng)恰好組成等比數(shù)列,且,求該等比數(shù)列的公比與數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列的前項(xiàng)和為,,且當(dāng)時(shí)的等差中項(xiàng),則數(shù)列的通項(xiàng)      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,等比數(shù)列{bn}的首項(xiàng)為b,公比為a,存在m,n∈N+使得am+1=bn成立,其中a,b均為正整數(shù),且a1<b1<a2<b2<a3 ;
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)函數(shù)f(x)=bmx+bm-1x2+…+b1xm,f′(x)是函數(shù)f(x)的導(dǎo)函數(shù);令Sm=f′(1),求Sm(用含n的代數(shù)式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,,,則的前項(xiàng)和__________

查看答案和解析>>

同步練習(xí)冊(cè)答案