【題目】已知曲線,處的切線與直線平行.

1討論的單調(diào)性

2上恒成立求實(shí)數(shù)的取值范圍

【答案】1,上單調(diào)遞增,,上單調(diào)遞減;2.

【解析】

試題分析:1求出 得增區(qū)間,得減區(qū)間;2,上恒成立等價(jià)于,故只需求出的最小值和的最大值,分別利用導(dǎo)數(shù)研究?jī)珊瘮?shù)的單調(diào)性,求出最值即可.

試題解析:1由條件可得,

,可得,

,可得解得;

,可得解得

所以上單調(diào)遞增,上單調(diào)遞減

2,當(dāng)時(shí),,,

,可得,時(shí)恒成立,

,故只需求出的最小值和的最大值.

1可知,上單調(diào)遞減,在上單調(diào)遞增,

的最小值為,

可得在區(qū)間上恒成立,

所以上的最大值為,

所以只需

所以實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).

1x,求向量ac的夾角;

2當(dāng)x時(shí),求函數(shù)f(x)2a·b1的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從數(shù)列中抽出一項(xiàng),依原來的順序組成的新叫數(shù)列的一個(gè)子列.

(1)寫出數(shù)列的一個(gè)是等比數(shù)列的子列

(2)若是無窮等比數(shù)列,首項(xiàng),公比,則數(shù)列是否存在一個(gè)子列,為無窮等差數(shù)列?若存在,寫出該子列的通項(xiàng)公式;若不存在,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程式是參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且取相同的長(zhǎng)度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程為

1求直線的普通方程與圓的直角坐標(biāo)方程;

2設(shè)圓與直線交于、兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生七不準(zhǔn)一日三省十問等新的規(guī)章制度.新規(guī)章制度實(shí)施一段時(shí)間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查卷共有10個(gè)問題,每個(gè)問題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組 ,,,,并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中的、的值;

(2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行座談會(huì),求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的.

(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(Ⅱ)估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(Ⅲ)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

2

3

2

7

表中的數(shù)據(jù)顯示,之間存在線性相關(guān)關(guān)系,請(qǐng)將(Ⅱ)的結(jié)果填入空白欄,并計(jì)算關(guān)于的回歸方程.

回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)數(shù)滿足不等式,函數(shù)極值點(diǎn).

(1”為假命題,“真命題,求實(shí)數(shù)取值范圍;

(2已知. ”為真命題,并記為,,必要不充分條件,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)若函數(shù)圖象在點(diǎn)處的切線方程為,求的值;

)求函數(shù)的極值;

)若,且對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了促進(jìn)學(xué)生的全面發(fā)展,鄭州市某中學(xué)重視學(xué)生社團(tuán)文化建設(shè),現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”、“演講社”三個(gè)金牌社團(tuán)中抽6人組成社團(tuán)管理小組,有關(guān)數(shù)據(jù)見下表(單位:人):

社團(tuán)名稱

成員人數(shù)

抽取人數(shù)

話劇社

50

a

創(chuàng)客社

150

b

演講社

100

c

(1)求的值;

(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔(dān)任管理小組組長(zhǎng),求這2人來自不同社團(tuán)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案