分析 (1)由圖與題意可設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px.(p>0).把點(diǎn)P(1,4)代入拋物線方程解得p即可得出;
(2)由直線PA與PB的斜率存在且傾斜角互補(bǔ),可得k1+k2=0,化簡可得y1+y2=-8.再利用直線AB的斜率kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$即可得出.
解答 解:(1)由圖與題意可設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px,(p>0).
把點(diǎn)(1,4),代入拋物線方程可得:16=2p,則p=8,
∴拋物線的方程為:y2=16x;
(2)∵直線PA與PB的斜率存在且傾斜角互補(bǔ),
∴k1+k2=$\frac{{y}_{1}-4}{{x}_{1}-1}$+$\frac{{y}_{2}-4}{{x}_{2}-1}$=$\frac{{y}_{1}-4}{\frac{{y}_{1}^{2}}{16}-1}$+$\frac{{y}_{2}-4}{\frac{{y}_{2}^{2}}{16}-1}$=$\frac{16}{{y}_{1}+4}$+$\frac{16}{{y}_{2}+4}$=0,
化簡可得y1+y2=-8,
直線AB的斜率kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{{y}_{1}-{y}_{2}}{\frac{{y}_{1}^{2}}{16}-\frac{{y}_{2}^{2}}{16}}$=$\frac{16}{{y}_{1}+{y}_{2}}$=-$\frac{1}{2}$,
直線AB的斜率-$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、斜率計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n}{n-4}$+$\frac{8-n}{8-n-4}$=2 | B. | $\frac{n+1}{n+1-4}$+$\frac{n+1+5}{n+1-4}$=2 | ||
C. | $\frac{n}{n-4}$+$\frac{n}{n+4-4}$=2 | D. | $\frac{n+1}{n+1-4}$+$\frac{n+5}{n+5-4}$=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 96 | B. | 120 | C. | 132 | D. | 240 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,則ac≤bc | B. | 若ac≤bc,則a≤b | C. | 若ac>bc,則a>b | D. | 若a≤b,則ac≤bc |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com